Recent news in HIRLAM verification and monitoring

Xiaohua Yang, also reporting works by Ulf Andrae, Karl-Ivar Ivarsson, Bent H. Sass, Carl Fortelius, et al

Outlines

What's new in the **HIRLAM** observation verification

- Stratified verification
 - Conditional verification
- Compare comparables!
 - Height correction of surface temperature
 - Extraction of surface wind
 - Use of nearest grid point for prec, cloud, gust etc.
- New convention for local observation station-id
- New flexibility to add additional parameters
- Spatial verification and upscaling
 - FBSS, SWS

New features in operational HIRLAM/HARMONIE monitoring

- Hirlam data portal
 - Additional skill scores, significance scores
 - Harmonie forecast chart, DA and forecast diagnosis, verification
 - Expansion of participating service, model and data category
- Monthly statistics of mast profile verification
- Hirlam on-duty team

Cold Feb 5, Feb 7 morning in Odense

Updated: 07/02-2012 13:13 UTC

T2m verification

Selection: Denmark using 22 stations Period: 20120202-20120209 T2m Hours: 00,06,12,18

Conclusion: most extreme T2m conditions here were associated with clear and calm conditions. Models in general fail to predict calm conditions.

Model vs station heights: Norway

Height correction of T2m

Observation sites in hilly area (Norway, ...) often lie in a valley

- Model heights > observation heights
 - ECMWF/T15: + 165m (norway)
 - · H12: +120 m (norway), +180m (south norway)
 - · H08: +150 m (south norway)
 - · Alaro 5.5: +120 m (south norway)
 - · Arome 2.5: + 80 m (south norway)
- Accordingly, post-processed model values of T2m interpolated to station position suffers systematic bias due to height difference
- · HIRLAM observation verification now provides optional correction using constant lapse rate

Observation verification

Selection: Norway using 91 stations Period: 201204 T2m Hours: 00.06.12.18

However, such is not generally true for European mountains...

ecmwf

dmi T15

met.no H12

Verification of surface wind: With and without forest fractions?

Up to now HIRLAM obs verification for surface T/RH uses weighted model average from open land tiles (non-water/ice/forest)

for other parameters (MSLP, W10m), all-tile weighted sum have been used

However, no surface measurement is done within forest...

Hirlam RCR Wind verification, average

Wind verification over forest-dominant area

Conclusion: model extracted surface wind shall only be computed from non-forest land tiles.

Lon

Lon

Fractions Brier skill Score (FBSS) (K-I Ivarsson)

- Swedish gauge data, climatological, 24h, ~30 km.
 - fewer obs than radar, larger reliability error
 - Still more reliable!
- FBSS: detect information on sub-grid scale variation of a forecast by comparing the mean values of forecasts and observations for different sizes of areas.
- ECMWF, HIRLAM, UM, HARMONIE-ALARO, multi-year (earliest data from 2006)

Results (April 2010 to June 2011. Minimum 4 values per square, reference forecast = sample clim.) E11: Hirlam 11km,G05: Hirlam 5.5km,ECM=ECMWF,ALA= Alaro 5.5 km, UM4= Unified model 4km

Karl-Ivar's early Christmas 2011 wish: Reliable radar data to use

SWS (B. Sass, 2011): "severe weather score" -A performance measure on relative skills between two
models on correct forecasts for defined events, with
upscaling principles:

SWS=
$$(1 + \sum_{j=1}^{K} J_{meso}) / (1 + \sum_{j=1}^{K} J_{ref})$$

J is the hit rate for a defined event, 0 < SWS < infinite a SWS > 1 indicates better mesoscale model forecast

combined SWS score (T2m,W10m,Precip) <u>Harmonie 2.5 km / ECMWF</u>, 1 Jan.- 1 Oct. 2011

SWS (<u>Warning</u> over Danish area) <u>Harmonie 2.5 km / ECMWF</u>, rr/12h > 24 mm

Data portal at Hirlam.org

Mast verification summary statistics (Carl Fortelius)

• Graphics of seasonal statistics have been included in the HIRLAM on-line mast verification facility under http://hirlam.org/

- Data-model inter-comparisons are compiled using the HARMONIE verification system are shown for each site individually
- Data from Sodankylä, Cabauw, and Lindenberg start from the winter 2009/2010.
 Data From Valladolid a year later
- Forecasting systems included in the inter-comparison are currently: HIRLAM RCR "FI07", ECMWF IFS "EC01", MF ARPEGE "FRAR", INM HIRLAM "SP16" FMI HARMONIE "FI25", and MF ALADIN "FRAL"
- Graphics are updated in the middle and at the end of each 3-monthly season
- The graphics are generated from the data as it has been displayed in the daily graphs

Sodankylä

2010 DJF 2010 MAM 2010 JJA 2010 SON 2011 DJF 2011 MAM 2011 JJA 2011 SON 2012 DJF 2012 MAM

Cabauw

2010 DJF 2010 MAM 2010 JJA 2010 SON 2011 DJF 2011 MAM 2011 JJA 2011 SON 2012 DJF

Lindenberg

2010 DJF 2010 MAM 2010 JJA 2010 SON 2011 DJF 2011 MAM 2011 JJA 2011 SON 2012 DJF

Valladolid

2011 DJF 2011 MAM 2011 JJA 2011 SON 2012 DJF 2012 MAM

Surface momentum flux

- Mean diurnal cycle of the surface momentum flux in DJF 2011/2012.
- All models overestimate flux at all stations where it is measured.
- Similar results are obtained in other periods as well, although relative differences tend to be smaller in summer. Visit the site and see for yourself!

hirlam.org on-duty team needs you!

