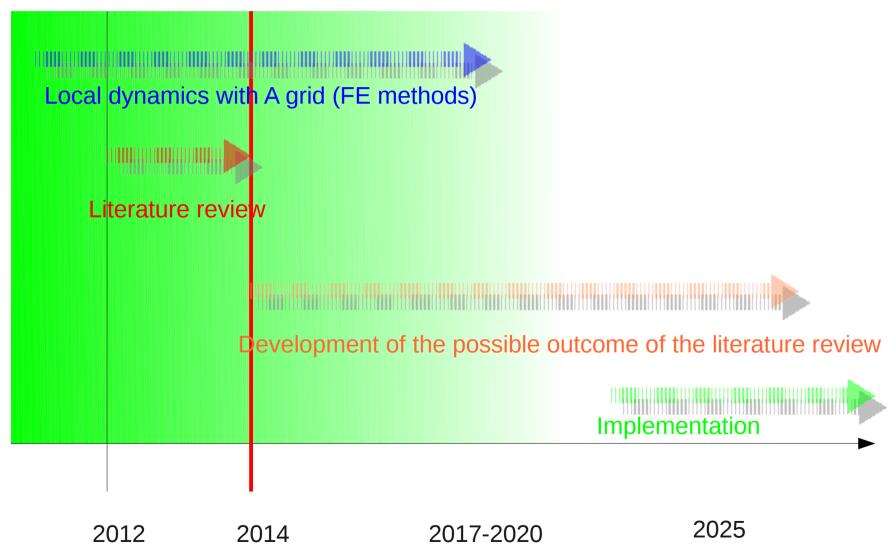
Presentation Workshop 2012: What about local dynamics?

Steven Caluwaerts

Dynamics: road map presented to our GA



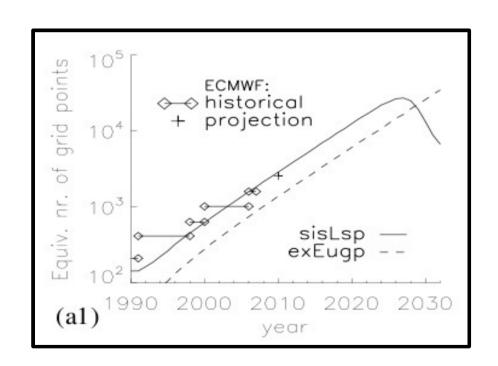
Eliminitating the A grid means we have to overhaul the whole system.

We stay with the current system at least for the term of the current strategy plan (green area).

Study of Cats: comparison between 2 extremes.

Explicit, Eulerian Gridpoint Model

And the winner is...

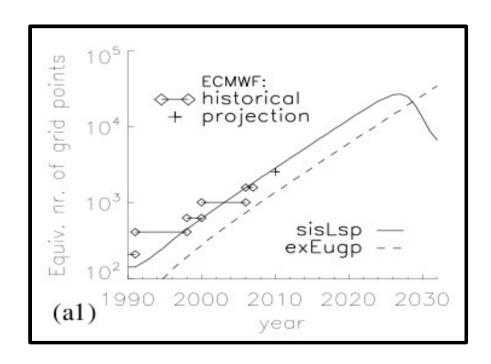


Cats G. 24 More Years of Numerical Weather Prediction: A Model Performance Model (wetensch.rapport KNMI; 2008)

Study of Cats: comparison between 2 extremes.

Explicit, Eulerian Gridpoint Model

And the winner is... changing in the future.



Cats G. 24 More Years of Numerical Weather Prediction: A Model Performance Model (wetensch.rapport KNMI; 2008)

Finite elements

Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

Finite elements

Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

Horizontal spatial discretisation: finite differences or spectral or ...

Finite differences

Local, only nearest neighbour interaction

Easy to parallelize

Simple to implement

Spectral discretisation

Global

Lot of communication

Very simple Helmholtz solver

Exact derivatives

Fast Fourier Transforms

Periodic fields needed

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} + f v$$

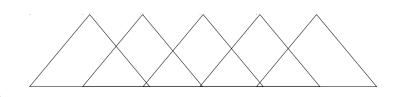
1) Write every field as a weighted sum of basis functions.

$$u(x, y, t) = \sum_{i} u_{i}(t)\phi_{i}(x, y)$$

$$v(x, y, t) = \sum_{i} v_{i}(t)\phi_{i}(x, y)$$

$$h(x, y, t) = \sum_{i} h_{i}(t)\phi_{i}(x, y)$$

1Dchapeau basis functions



$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} + f v$$

1) Write every field as a weighted sum of basis functions.

$$u(x, y, t) = \sum_{i} u_{i}(t)\phi_{i}(x, y)$$

$$v(x, y, t) = \sum_{i} v_{i}(t)\phi_{i}(x, y)$$

$$h(x, y, t) = \sum_{i} h_{i}(t)\phi_{i}(x, y)$$

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} + f v$$

1) Write every field as a weighted sum of basis functions.

$$u(x, y, t) = \sum_{i} u_{i}(t)\phi_{i}(x, y)$$

$$v(x, y, t) = \sum_{i} v_{i}(t)\phi_{i}(x, y)$$

$$h(x, y, t) = \sum_{i} h_{i}(t)\phi_{i}(x, y)$$

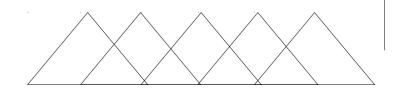
$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} + f v$$

1) Write every field as a weighted sum of basis functions.

$$u(x, y, t) = \sum_{i} u_{i}(t)\phi_{i}(x, y)$$

$$v(x, y, t) = \sum_{i} v_{i}(t)\phi_{i}(x, y)$$

$$h(x, y, t) = \sum_{i} h_{i}(t)\phi_{i}(x, y)$$



2) Solve the *weak formulation* of the equation.

$$\int \frac{\partial u}{\partial t} \phi_k dx dy = -g \int \frac{\partial h}{\partial x} \phi_k dx dy + f \int v \phi_k dx dy$$

results in N expressions with N=number of basis functions

This results in a matrix problem with off-diagonal elements.

3) Work out the equation...

$$\sum_{i} \frac{du_{i}}{dt} \int \phi_{i} \phi_{k} dx dy = -g \sum_{i} h_{i} \int \frac{d\phi_{i}}{dx} \phi_{k} dx dy + f \sum_{i} v_{i} \int \phi_{i} \phi_{k} dx dy$$

This results in a matrix problem with off-diagonal elements.

3) Work out the equation...

$$\sum_{i} \frac{du_{i}}{dt} \int \phi_{i} \phi_{k} dx dy = -g \sum_{i} h_{i} \int \frac{d\phi_{i}}{dx} \phi_{k} dx dy + f \sum_{i} v_{i} \int \phi_{i} \phi_{k} dx dy$$

4) Calculate the different integrals. For example if you use 2D-chapeau functions, you have:

1	2	3
4	0	5
6	7	8

$$\sum_{i} v_{i} \int \phi_{i} \phi_{0} dx dy = d^{2} \left(\frac{4}{9} V_{0} + \frac{V_{2} + V_{5} + V_{7} + V_{4}}{9} + \frac{V_{1} + V_{3} + V_{8} + V_{6}}{36} \right)$$
 off-diagonal elements

Pro's and cons for finite element discretisation.

local method

more accurate derivatives than finite difference, but less accurate than spectral method

solving sparse matrix-problem for Helmholtz equation, more difficult than spectral method

domain with variable resolution possible

We will use a finite element discretisation to test local dynamics.

Finite elements

Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

Finite elements

Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

Current SISL-spectral timestep organisation.

Spectral fields (u,v,...) at timestep t^n Spectral Inverse FFT

Calculating SL-trajectories

Calculating physics

Calculating explicit part SI-method

Boundary coupling and periodisation

GP

▼ FFT

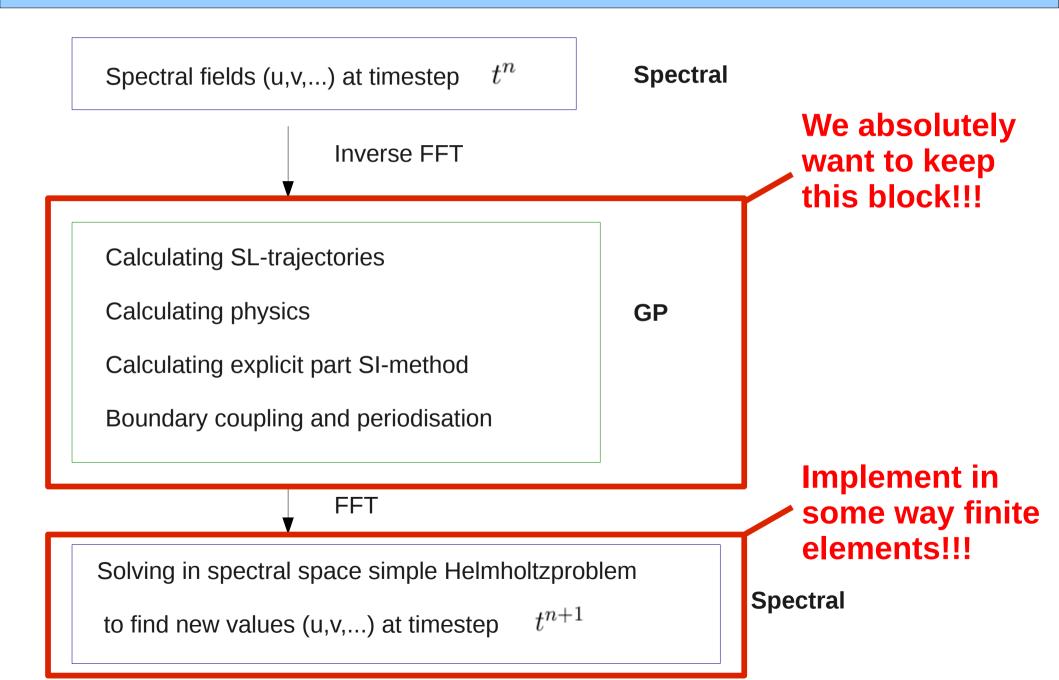
Solving in spectral space simple Helmholtzproblem

to find new values (u,v,...) at timestep

 t^{n+1}

Spectral

Current SISL-spectral timestep organisation.



Timestep organisation current SISL-spectral code

Calculating SL-trajectories $\frac{u^{n+1} - u_*^n}{\Delta t} = -g \frac{\frac{\partial h}{\partial x}^{n+1} + \frac{\partial h}{\partial x_*}^n}{2} + f \frac{v^{n+1} + v_*^n}{2}$ $\frac{v^{n+1} - v_*^n}{\Delta t} = -g \frac{\frac{\partial h}{\partial y}^{n+1} + \frac{\partial h}{\partial y_*}^n}{2} - f \frac{u^{n+1} + u_*^n}{2}$ $\frac{h^{n+1} - h_*^n}{\Delta t} = \frac{-H}{2} \left(\frac{\partial u}{\partial x}^{n+1} + \frac{\partial u}{\partial x_*}^n + \frac{\partial v}{\partial y}^{n+1} + \frac{\partial v}{\partial y_*}^n \right)$

$$u^{n+1} + \frac{g\Delta t}{2} \frac{\partial h}{\partial x}^{n+1} - \frac{f\Delta t}{2} v^{n+1} = u_*^n - \frac{g\Delta t}{2} \frac{\partial h}{\partial x_*}^n + \frac{f\Delta t}{2} v_*^n$$

$$v^{n+1} + \frac{g\Delta t}{2} \frac{\partial h}{\partial y}^{n+1} + \frac{f\Delta t}{2} u^{n+1} = v_*^n - \frac{g\Delta t}{2} \frac{\partial h}{\partial y_*}^n - \frac{f\Delta t}{2} u_*^n$$

$$h^{n+1} + \frac{H\Delta t}{2} \left(\frac{\partial u}{\partial x}^{n+1} + \frac{\partial v}{\partial y}^{n+1} \right) = h_*^n - \frac{H\Delta t}{2} \left(\frac{\partial u}{\partial x_*}^n + \frac{\partial v}{\partial y_*}^n \right)$$

Solve Helmholtzproblem in h^{n+1} : $\left(\nabla^2 + k\right)h^{n+1} = F$ and calculate u^{n+1} and v^{n+1}

Finite elements

Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

Finite elements

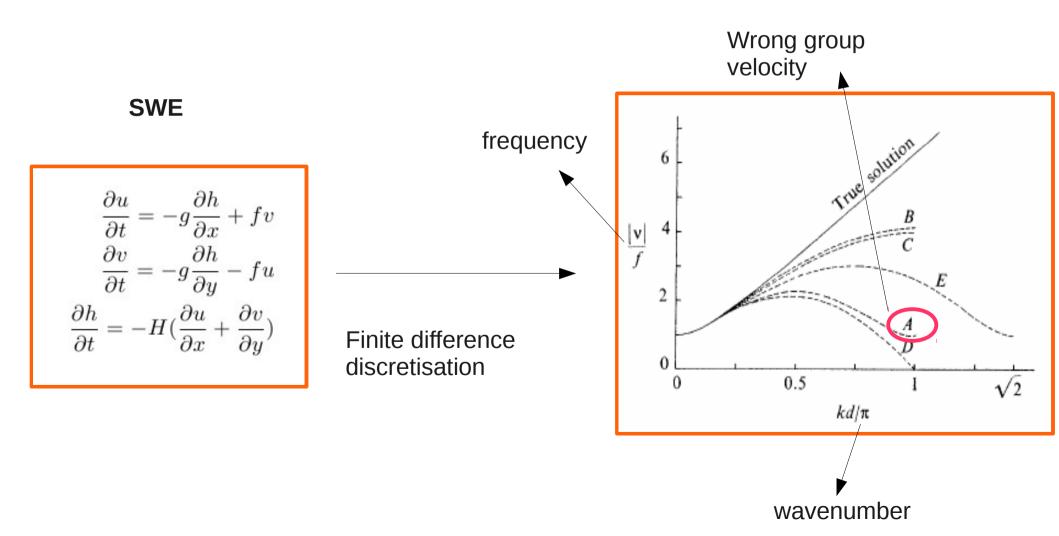
Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

Mesinger and Arakawa found bad dispersion relations for finite differences...

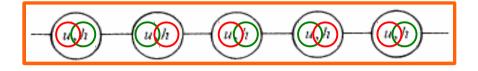
Let us assume a wavelike solution: $u(x,t) = \mathbf{U}e^{i\omega t + ikx}$



As a first solution one can go to a staggered grid.

1D

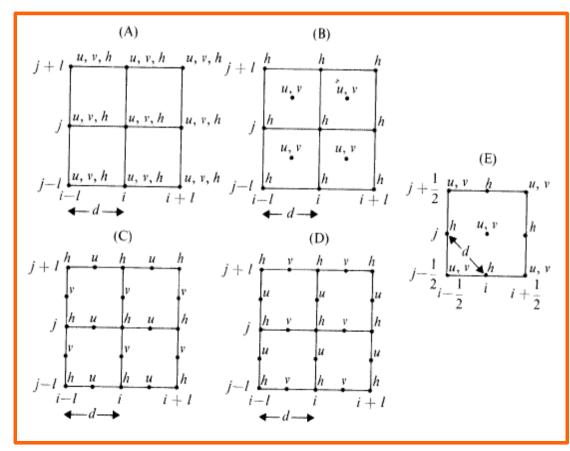
A-grid



2 decoupled solutions

C-grid

2D



We have to go a divergence=vorticity formulation of the equations.

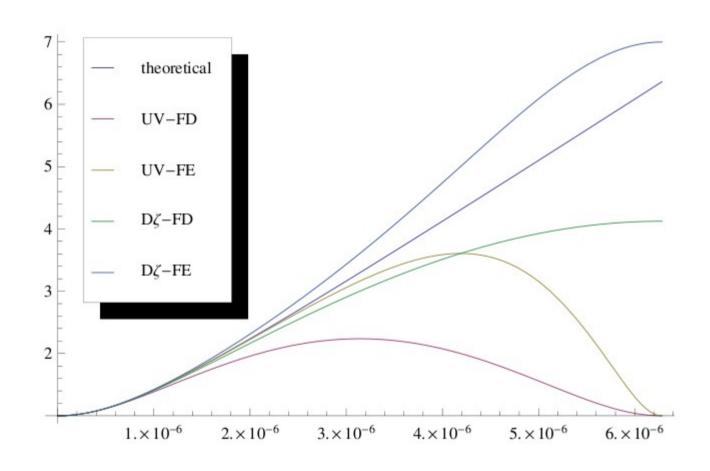
$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} + fv$$
$$\frac{\partial v}{\partial t} = -g \frac{\partial h}{\partial y} - fu$$
$$\frac{\partial h}{\partial t} = -H(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y})$$

$$\begin{split} \frac{\partial \zeta(x,y,t)}{\partial t} + fD(x,y,t) &= 0 \\ \frac{\partial D(x,y,t)}{\partial t} - f\zeta(x,y,t) &= -g\nabla^2 h(x,y,t) \\ \frac{\partial h(x,y,t)}{\partial t} &= -HD(x,y,t) \end{split}$$

possible on classical A-grid!!

$$D = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$
$$\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

Dispersion relations for finite differences/elements for both formulations.



Finite elements

Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

Finite elements

Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

As discussed earlier, we start from exactly the same point, but...

Calculating SLtrajectories

$$\frac{u^{n+1} - u_*^n}{\Delta t} = -g \frac{\frac{\partial h}{\partial x}^{n+1} + \frac{\partial h}{\partial x_*}^n}{2} + f \frac{v^{n+1} + v_*^n}{2}$$

$$\frac{v^{n+1} - v_*^n}{\Delta t} = -g \frac{\frac{\partial h}{\partial y}^{n+1} + \frac{\partial h}{\partial y_*}^n}{2} - f \frac{u^{n+1} + u_*^n}{2}$$

$$\frac{h^{n+1} - h_*^n}{\Delta t} = \frac{-H}{2} \left(\frac{\partial u}{\partial x}^{n+1} + \frac{\partial u}{\partial x_*}^n + \frac{\partial v}{\partial y}^{n+1} + \frac{\partial v}{\partial y_*}^n \right)$$

$$\begin{split} u^{n+1} + \frac{g\Delta t}{2}\frac{\partial h}{\partial x}^{n+1} - \frac{f\Delta t}{2}v^{n+1} &= u_*^n - \frac{g\Delta t}{2}\frac{\partial h}{\partial x_*}^n + \frac{f\Delta t}{2}v_*^n = K \\ v^{n+1} + \frac{g\Delta t}{2}\frac{\partial h}{\partial y}^{n+1} + \frac{f\Delta t}{2}u^{n+1} &= v_*^n - \frac{g\Delta t}{2}\frac{\partial h}{\partial y_*}^n - \frac{f\Delta t}{2}u_*^n = L \\ h^{n+1} + \frac{H\Delta t}{2}\left(\frac{\partial u}{\partial x}^{n+1} + \frac{\partial v}{\partial y}^{n+1}\right) &= h_*^n - \frac{H\Delta t}{2}\left(\frac{\partial u}{\partial x_*}^n + \frac{\partial v}{\partial y_*}^n\right) = M \end{split}$$

... we change the solution of the implicit part!

Rewriting into vorticity-divergence

$$D^{n+1} + \frac{g\Delta t}{2} \left(\frac{\partial^2 h}{\partial x^2} + \frac{\partial^2 h}{\partial y^2} \right)^{n+1} - \frac{f\Delta t}{2} \zeta^{n+1} = \frac{\partial K}{\partial x} + \frac{\partial L}{\partial y}$$

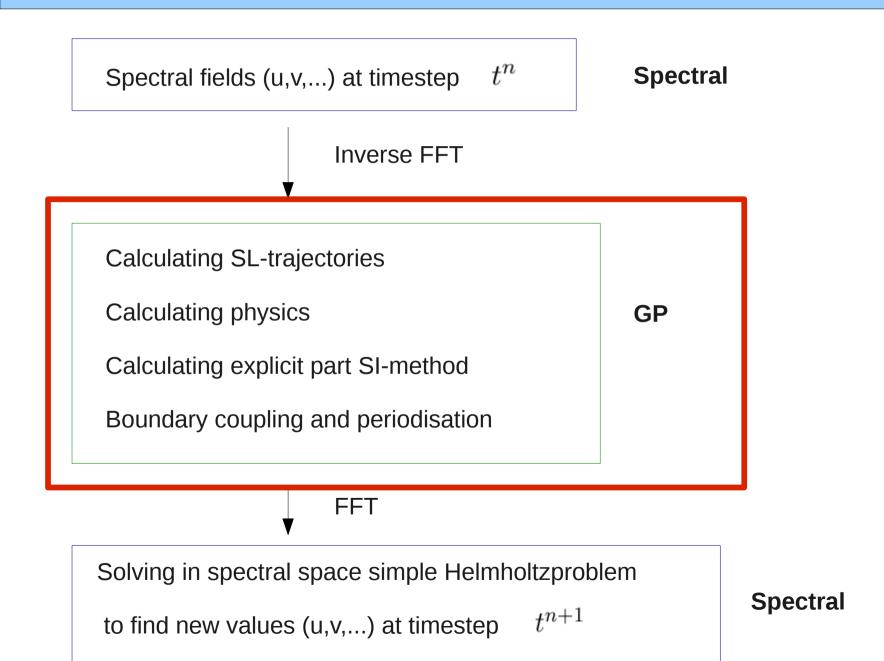
$$\zeta^{n+1} + \frac{f\Delta t}{2} D^{n+1} = \frac{\partial L}{\partial x} - \frac{\partial K}{\partial y}$$

$$h^{n+1} + \frac{H\Delta t}{2} D^{n+1} = M$$

Solve Helmholtzproblem in
$$h^{n+1} \ : \ \left(\nabla^2 + k \right) h^{n+1} = F$$
 and calculate D^{n+1} and ζ^{n+1}

Calculate the wind fields with the Poisson equations:

$$\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} = \frac{\partial D(x,y)}{\partial x} - \frac{\partial \zeta(x,y)}{\partial y}$$
$$\frac{\partial^2 v(x,y)}{\partial x^2} + \frac{\partial^2 v(x,y)}{\partial y^2} = \frac{\partial D(x,y)}{\partial y} + \frac{\partial \zeta(x,y)}{\partial x}$$



Spectral fields (u,v,...) at timestep

 t^n

Spectral coefficient space

Inverse FFT transform to gridpoint space

Calculating SL-trajectories

Calculating physics

Calculating explicit part SI-method

Boundary coupling and periodisation

GP

FFT transform to coeff space

 t^{n+1}

Solving in spectral space simple Helmholtzproblem

to find new values (u,v,...) at timestep

Spectral coefficient space

Spectral fields (u,v,...) at timestep t^2

Spectral coefficient

space

Inverse FFT transform to gridpoint space

Calculating SL-trajectories

Calculating physics

Calculating explicit part SI-method

Boundary coupling and periodisation

GP

FFT transform to coeffspace

Solving in spectral space simple Helmholtzproblem

to find new values (u,v,...) (D,Zeta) at timestep

 t^{n+1} coeffi

Spectral coefficient space

Spectral fields (u,v,...) at timestep

 t^n

Spectral coefficient space

Inverse FFT transform to gridpoint space

Calculating SL-trajectories

Calculating physics

Calculating explicit part SI-method

Boundary coupling and periodisation

GP

Solve Poisson

equation to find

(u,v) at t^{n+1}

FFT transform to coeff space

Solving in spectral space simple Helmholtzproblem

to find new values (u,v,...) (D,Zeta) at timestep

 t^{n+1}

Spectral coefficient space

Finite elements

Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

Finite elements

Current timestep-organisation

The need for a reformulation to vorticity-divergence

Finite element timestep-organisation

Stable method found, now testing...

We constructed a **numerically stable method** that integrates localized dynamics (= finite elements) into our **current timestep organisation**.

And now?

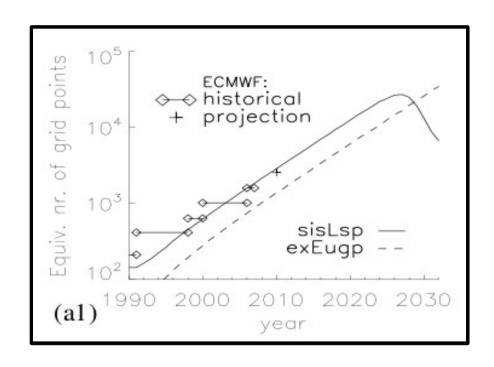
- test orography-behaviour of new method on 2D SWE-model (Alembix)
- do the complete analysis for the 3D non-hydrostatic model
- think about different kind of finite elements

-...

Remarks, ideas, questions???

Resolution increases year after year

What kind of dynamical core will perform best in the future?



Opmerken dat het eigenlijk vooral om orografie gaat...

Cats G. 24 More Years of Numerical Weather Prediction: A Model Performance Model (wetensch.rapport KNMI; 2008)

Shallow water equations (SWE)

SWE

$$\begin{split} \frac{Du}{dt} &= -g\frac{\partial h}{\partial x} + fv \\ \frac{Dv}{dt} &= -g\frac{\partial h}{\partial y} - fu \\ \frac{Dh}{dt} &= -h(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}) \end{split}$$

$$u = u'$$

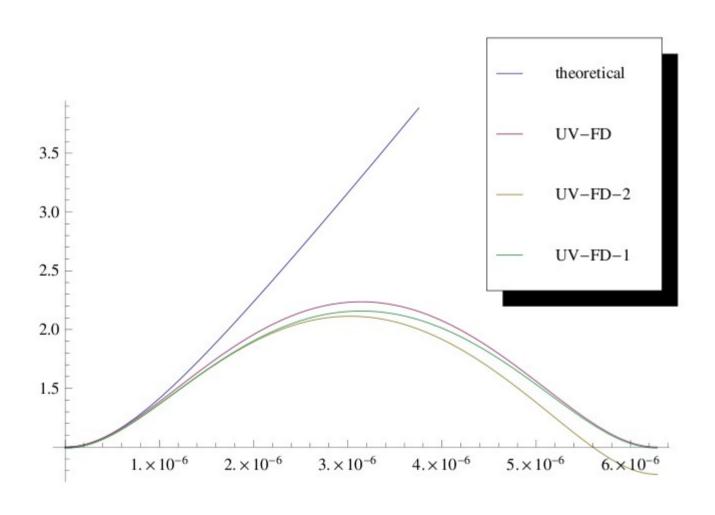
$$v = v'$$

$$h = H + h'$$

Linearized SWE

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} + fv$$
$$\frac{\partial v}{\partial t} = -g \frac{\partial h}{\partial y} - fu$$
$$\frac{\partial h}{\partial t} = -H(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y})$$

Dispersion relations depends on the exact way of evaluating the equations.



Gravity waves: Explicit vs Semi-Implicit

$$\frac{\partial u}{\partial t} = -g \frac{\partial h}{\partial x} + fv$$
$$\frac{\partial v}{\partial t} = -g \frac{\partial h}{\partial y} - fu$$
$$\frac{\partial h}{\partial t} = -H(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y})$$

Explicit

$$\frac{u^{n+1} - u^n}{\Delta t} = -g \frac{\partial h}{\partial x}^n + f v^n$$

CFL- timestep limitation

Gravity waves (100m/s) are possible solution

Semi-Implicit

$$\frac{u^{n+1}-u^n}{\Delta t} = -\frac{g}{2}\left(\frac{\partial h}{\partial x}^n + \frac{\partial h}{\partial x}^{n+1}\right) + \frac{f}{2}\left(v^n + v^{n+1}\right)$$

Unconditionally stable, timestep not limited by gravity waves but Helmholtzproblem needs to be solved:

$$\left(\nabla^2 + k\right)h^{n+1} = F$$

Advection: Eulerian or Semi-Lagrangian

If advection is handled explicitly, the timestep is again limited by the CFL-criterion. (Eulerian)

If you follow air parcels during their motion (= Lagrangian approach), your method is unconditionally stable

One can use a **semi-lagrangian** method = calculate along trajectories of parcels at gridpoints

$$\frac{u_A^{n+1}-u_*^n}{\Delta t} = -\frac{g}{2}\left(\left(\frac{\partial h}{\partial x}\right)_*^n + \left(\frac{\partial h}{\partial x}\right)_A^{n+1}\right) + \frac{f}{2}\left(v_*^n + v_A^{n+1}\right)$$