

ALADIN workshop – HIRLAM ASM Marrakech, 7–10 May 2012

The implementation of Boyd's proposal in the HARMONIE system (and other E-zone business)

Daan Degrauwe, Steven Caluwaerts, Fabrice Voitus, Rafiq Hamdi and Piet Termonia Royal Meteorological Institute, Belgium

Context and content

- A spectral Limited Area Model requires
 - boundary conditions
 - periodization of the fields for the spectral transforms
- Currently, these issues are tackled with engineering solutions
- Boyd (2005) made a proposal to deal with these issues in a more rational way

Introduction

Current

Boyd's proposal

Operational scores

Lothar storm case

Implementation

Context and content

- A spectral Limited Area Model requires
 - boundary conditions
 - periodization of the fields for the spectral transforms
- Currently, these issues are tackled with engineering solutions
- Boyd (2005) made a proposal to deal with these issues in a more rational way

Content:

- Current solution
- Boyd's proposal
- Impact on operational scores
- Impact for Lothar storm
- Implementation in cy38

The implementation of Boyd's proposal in the HARMONIE system

Introduction

Current solution

Boyd's proposal

Operational scores

Lothar storm case

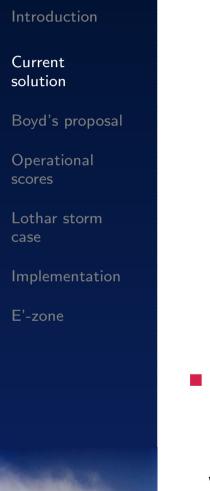
Implementation

Context and content

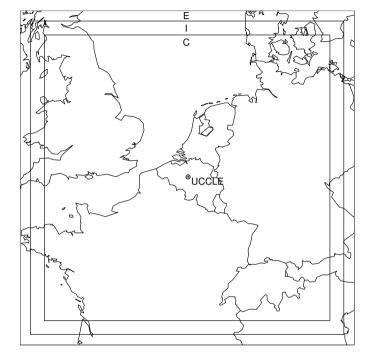
- A spectral Limited Area Model requires
 - boundary conditions
 - periodization of the fields for the spectral transforms
- Currently, these issues are tackled with engineering solutions
- Boyd (2005) made a proposal to deal with these issues in a more rational way

Content:

- Current solution
- Boyd's proposal
- Impact on operational scores
- Impact for Lothar storm
- Implementation in cy38
- Bonus: running without the E-zone


Introduction

Current solution


- Boyd's proposal
- Operational scores
- Lothar storm case
- Implementation
- E'-zone

Current solution

Domain organization: C + I + E

Relaxation in I with power function

$$\alpha(z) = (p+1)z^p - pz^{p+1}$$

with p a tunable parameter

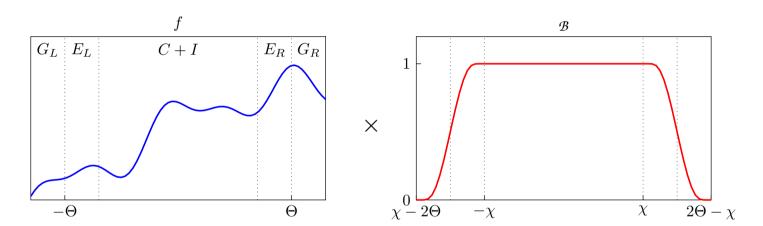
Periodization in E with cubic splines + transversal smoothing

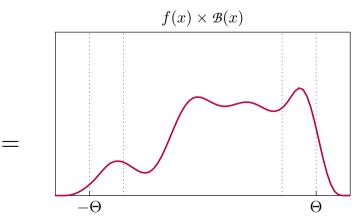
Boyd's proposal: periodization

Two-step procedure

1. Multiply with a bell window

Introduction


Boyd's proposal


Operational scores

Lothar storm case

Implementation

E'-zone

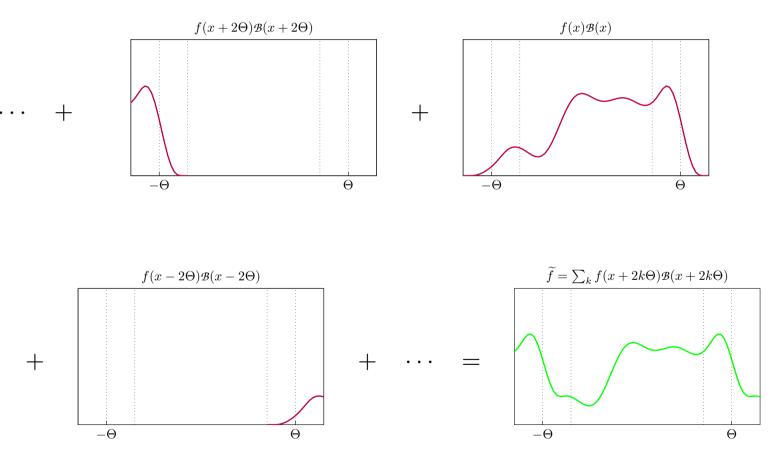
Introduction

Boyd's proposal

Operational

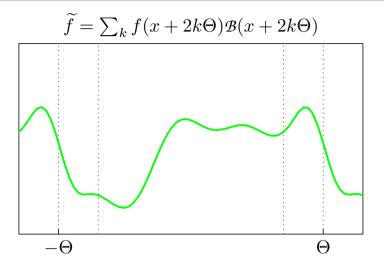
Lothar storm

Implementation


scores

Current

Boyd's proposal: periodization


Two-step procedure

- 1. Multiply with a bell window
- 2. Summation of series of shifted products

Boyd's proposal: periodization

Introduction

Current solution

Boyd's proposal

Operational scores

Lothar storm case

Implementation

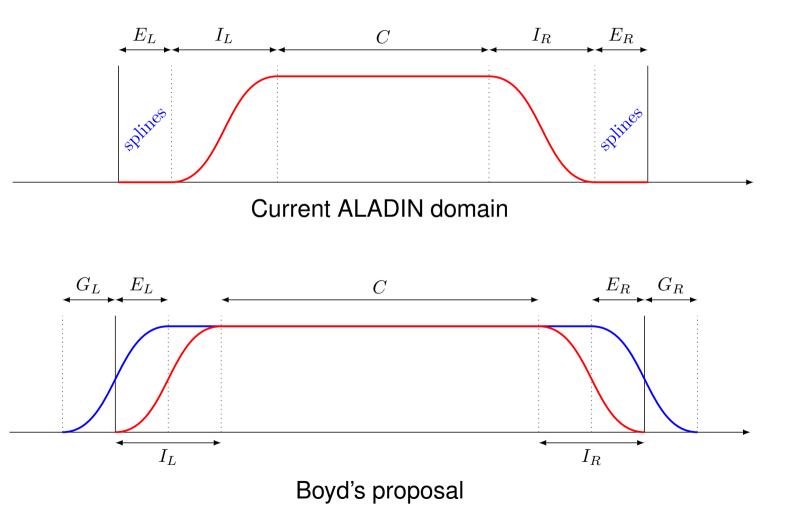
E'-zone

Remarks:

- Boyd's method requires data from outside the periodization interval, but this is no problem since we couple to a *global* model
- The bell window is "infinitely smooth":

$$\mathcal{B}(z) = \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{Lz}{\sqrt{1-z^2}}\right), \quad \text{ with } z \in (-1,1) \text{ inside the } E\text{-zone}$$

- This should lead to a faster decay of the Fourier spectrum
- The use of physical information near the boundaries should improve the semi-Lagrangian trajectories



Boyd's proposal: relaxation

Relaxation with the same erf-based bell window

- Introduction
- Current solution
- Boyd's proposal
- Operational scores
- Lothar storm case
- Implementation
- E'-zone

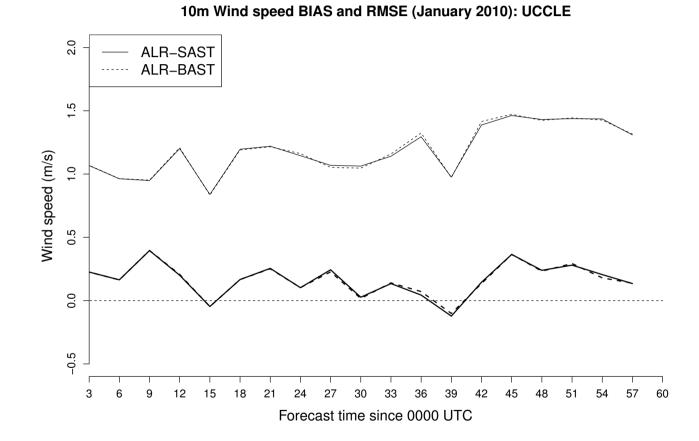
Domain organization with overlap between *E*-zone and *I*-zone:

Operational scores

Verification over Belgium for January 2010, ALARO physics:

Introduction

Current solution


Boyd's proposal

Operational scores

Lothar storm case

Implementation

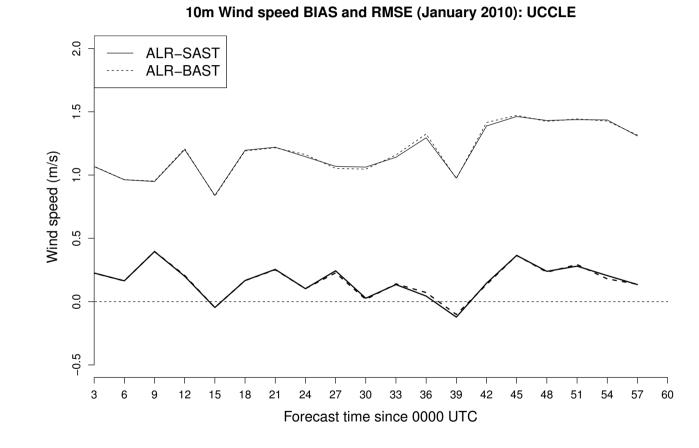
E'-zone

Operational scores

Verification over Belgium for January 2010, ALARO physics:

Introduction

Current solution


Boyd's proposal

Operational scores

Lothar storm case

Implementation

E'-zone

Also for other verification periods and other variables, the difference is minimal, *despite the theoretical superiority of Boyd's proposal*

The implementation of Boyd's proposal in the HARMONIE system

ALADIN workshop – HIRLAM ASM, Marrakech – 7/14

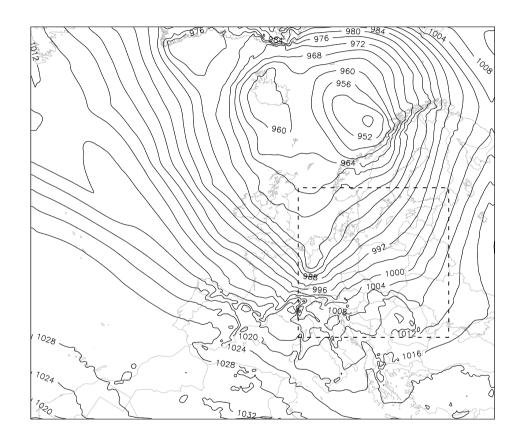
Introduction

Current solution

Boyd's proposal

Operational scores

Lothar storm case


Implementation

E'-zone

We performed a 'perfect model' experiment for the Lothar storm case (1999/12/26):

Host run at 10km

- Guest run on subgrid of host run
- Same timesteps, dynamics, physics for both runs
- Coupling every timestep

Hence all differences between guest and host are due to periodization and relaxation.

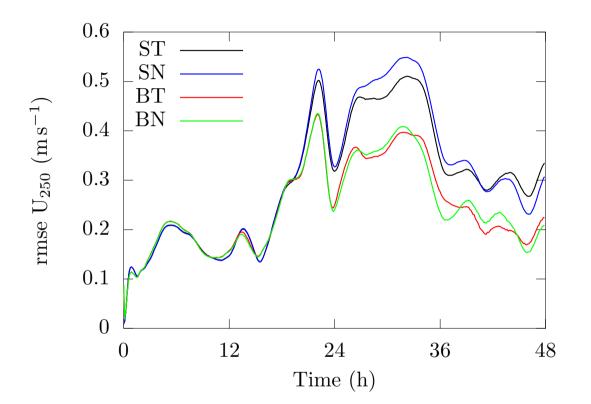
The implementation of Boyd's proposal in the HARMONIE system

ALADIN workshop - HIRLAM ASM, Marrakech - 8/14

Lothar storm case: results

Periodization: Splines/Boyd; Truncated/Non-truncated SL trajectories

Introduction


Current solution

Boyd's proposal

Operational scores

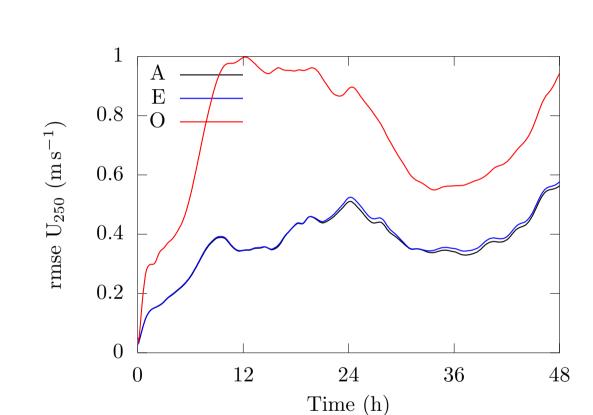
Lothar storm case

Implementation

Lothar storm case: results

- Periodization: Splines/Boyd; Truncated/Non-truncated SL trajectories
- Relaxation: Aladin/Erf/Overlapped

Current solution


Introduction

Boyd's proposal

Operational scores

Lothar storm case

Implementatio

Lothar storm case: results

- Periodization: Splines/Boyd; Truncated/Non-truncated SL trajectories
- Relaxation: Aladin/Erf/Overlapped

Current

Introduction

Boyd's proposal

Operational scores

Lothar storm case

Implementation

- So:In case of a strong forcing, Boyd's method outperforms spline periodization.
- Truncation of semi-Lagrangian trajectories is not necessary when using Boyd's method.
- The tuned relaxation function of Aladin is quite good.
- Overlapping is not such a good idea for our semi-Lagrangian model.

Implementation

Introduction

Current solution

Boyd's proposal

Operational scores

Lothar storm case

Implementation

E'-zone

Boyd periodization is phased in cy38t1

```
Specification during e(e)927:
&YOMFPC
LFPBOYD=.TRUE.,
/
&YOMFPD
NFPBWX=11,
NFPBWY=11,
```

The final domain will be a bit smaller than the one specified with NFPLUX/NFPGUX

Implementation

Introduction

Current solution

Boyd's proposal

Operational scores

Lothar storm case

Implementation

E'-zone

Boyd periodization is phased in cy38t1

```
Specification during e(e)927:
&YOMFPC
LFPBOYD=.TRUE.,
/
&YOMFPD
NFPBWX=11,
NFPBWY=11,
```

The final domain will be a bit smaller than the one specified with NFPLUX/NFPGUX

So there is no reason to do badly what can be done well !

Introduction

Boyd's proposal

Operational

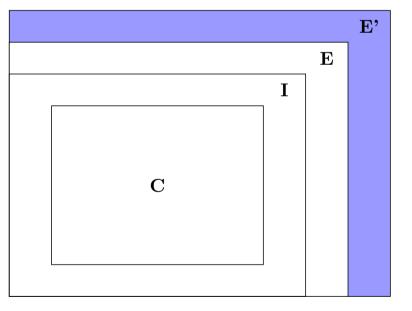
Lothar storm

Implementation

scores

case

E'-zone


Current

Running without the E-zone

Currently, gridpoint calculations are carried out unnecessarily in the E-zone

- Mariano Hortal made a proposal to avoid this, by doing the periodizations (with splines) during the run, as a part of the spectral transforms
- In order not to break functionality, Ryad El Khatib proposed to put this feature in a separate E'-zone, which is invisible to the gridpoint part of the model.

The domain organization now looks like

where in practice, either E = 0 or E' = 0.

Running without the E-zone

Introduction

Current solution

Boyd's proposal

Operational scores

Lothar storm case

Implementation

E'-zone

Implementation in cy38t1:

```
&NAMFPD
NFPNOEXTZL=11,
NFPNOEXTZG=11,
```

&NEMDIM NNOEXTZL=11, NNOEXTZG=11,

245

240

235

230

225

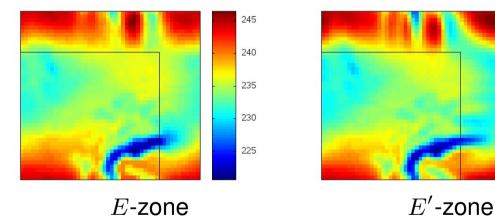
Introduction

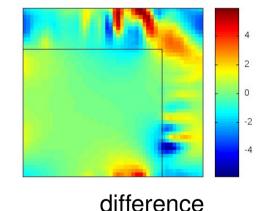
Current solution

Boyd's proposal

Operational scores

Lothar storm case


Implementation


E'-zone

Implementation in cy38t1:

&NAMFPD	&NEMDIM
NFPNOEXTZL=11,	NNOEXTZL=11,
NFPNOEXTZG=11,	NNOEXTZG=11,
/	/

Preliminar results: temperature difference between run with E and run with E' after one timestep:

These large (!) differences are due to

- Recalculation of splines for every transform
- Lacking of transversal smoothing

Running without the E-zone

Introduction

- Current solution
- Boyd's proposal
- Operational scores
- Lothar storm case
- Implementation
- E'-zone

Possible solutions:

- Coupling to vorticity and divergence instead of to wind speeds.
- Coupling in spectral space

Running without the E-zone

Introduction

- Current solution
- Boyd's proposal
- Operational scores
- Lothar storm case
- Implementation
- E'-zone

Possible solutions:

- Coupling to vorticity and divergence instead of to wind speeds.
- Coupling in spectral space

... to be continued ...

Introduction

Current solution

Boyd's proposal

Operational scores

Lothar storm case

Implementation

E'-zone

Thank you !

The implementation of Boyd's proposal in the HARMONIE system

ALADIN workshop - HIRLAM ASM, Marrakech - 14/14