Latest developments around the LAMEPS in Hungary

• Presented by: *Mihaly Szucs*

Hungarian Meteorological Service, szucs.m@met.hu

- Special thanks to colleagues who worked on this area:
 - Edit Hagel
 - Andras Horanyi
 - Mate Mile
- Thanks to the whole Hungarian NWP community

History and outline

- The Hungarian LAMEPS was introduced in February 2008
- Introduction of 8km version with ALARO physics in November 2011
- Introduction of EDA system is a plan for the near future

- Operational system
 - Downscaling of PEARP
 - Characteristics of operational LAMEPS
- Implemented changes
 - better single forecasts
 - Finer resolution
 - Better physics parametrization
- Planned changes
 better ensemble system
 - Global model
 - Local observations
 - Local perturbations

Operational system Simple downscaling of PEARP

- Resolution of ARPEGE EPS is about 18km over Hungary
- Run at 06UTC and 18 UTC

• The evolution of PEARP:

	PEARP 1.5	PEARP 2.0	PEARP 3.0
Introduction	January 2008	December 2009	December 2010
Perturbation	Svs+Blend. Breed.	SV+EDA	SV+EDA
Model error	No	Yes	Yes
Resolution	T358C2.4L55	T358C2.4L65	T538C2.4L65
Num. of mem.	11	35	35

Operational system Characteristics of Hungarian LAMEPS

- Some changes were implemented in November 2011
- The aim was to improve the quality of the single members

	old version	new version
	at 18UTC for	at 18UTC for
Runs	+60hours	+60hours
Horizontal res.	12km	8km
Vertical res.	46 levles	49 levels
Timesteps	450 s	300 s
Physics	old ALADIN	ALARO
Num. of mem.	11	11
Local perturbations	No	No
Local observations	No	No

Operational system Products for forecasters

Latest developments around the LAMEPS in Hungary

Operational system Products for forecasters

Experiences with ALARO

- 500hPa temperature
- Blue: 12km, ALADIN
- Red: 8km, ALADIN
- Green: 8km, ALARO
- The resolution increase on its own - does not bring clear benefit
- The new physics package made a slight improvement in scores

Experiences with ALARO

- 850hPa temperature CRPS
- The improvement was obvious in probabilistic scores as well in highatmosphere

- A new scheme was necessary for screen level diagnostics
- Purple: ALADIN
- Blue: ALARO with original ALARO diagnostics
- Green: ALARO with ALADIN diagnostics
- Red: ALARO with new diagnostics

Possibilities to improve LAMEPS

- Two methods of local perturbation generation have been examined:
 - Singular vector experiments
 - CANARI surface perturbations
- Addition of local observation (now there is no local data assimilation in LAMEPS)
- Find the best way of coupling (global model, frequency)

Singular vector experiments

- There were only a limited number of experiments because of the high computational cost
- Targeted SVs can be useful but
 - Not easy to find the way of rescaling the perturbations
 - The impact of SVs is limited in time

Latest developments around the LAMEPS in Hungary

CANARI surface perturbations

- The observations in CANARI OI were perturbed
- 6-hour cycle which was coupled to PEARP (run only at 18UTC)
- Forecasts were started at 18UTC

CANARI surface perturbations

- The method decreases the percentage of the outliers of 2meter temperature
- Black: unperturbed
- Blue: original PEARP
- Orange: perturbed

Latest developments around the LAMEPS in Hungary

CANARI surface perturbations

- It made not just a perturbation which increased the spread but improved the quality of the ICs
- Local perturbations and observation can be introduced

Coupling to the ECMWF EPS

- Experiments in a framework of an ECMWF's special project
- Verifications made from about 50 cases
- 12UTC ECMWF EPS run is
 used to our 18UTC run
- Positive impact in highatmosphere (500hPa geopotential)

Coupling to the ECMWF EPS

- Usually PEARP coupled system has higher rmse and higher spread
- The positive impact is less closer to the surface
- In blue version the surface fields are changed from ARPEGE

- A configuration was installed where surface fields are from our 'deterministic' model (coupled to IFS, data assimilation is used)
- In 2m temp BIAS it improved a lot but there are problems with 10m wind CRPS
- Technically it works but there are some inconsistencies

Future plans

- Construction of an operational ensemble data assimilation system
 - The aim is to use and perturb as many observation as possible
- Further investigation around the question of LBCs
- Long-term plans with mesoscale EPS
 - In the framework of an ECMWF's special project
 - With AROME model

Thank you for your attention! Questions?