
Portage of AL26T1_op4 on IBM Regatta p690
machine 

.

François Thomas ft@fr.ibm.com 
Revised and Approved by National Institute of Meteorology Tunisie 

April, 5th, 2004 
Part 7: Data assimilation, Variational computations



1.      Summary  

This document outlines the work performed at INM from February, 22nd to March, 2nd. The
tasks that were performed during this stay are: 

• system tasks : software upgrade (AIX, LoadLeveler, Parallel Environment, compilers), disk
space management, installation of a web server, etc.

• compilation and link of AL26T1_OP4
• unsuccessful attempt to compile ODB
• implementation of a workload management strategy using LoadLeveler, WLM and vsrac, a

tool developped by IBM Montpellier
• test and implementation of an asynchronous method for running a forecast with slightly

outdated coupling files from Meteo France
• start a port of Metview/Magics
We will describe all these tasks and give four appendices regarding :
• software management under AIX
• AIX system backup
• users management with AIX
• vsrac : task placement tool 

2.      System tasks  
2.1      Software upgrade  

The first step of the work was to upgrade the system software to the latest levels. The table
below summarizes the levels currently installed on the p690 Text (Body)

Software name Software name

AIX 5.1 ML5 : Maintenance Level 5 

Parallel Environment 3.2.0.17 

Load Leveler 3.1.0.22 

xlf compiler 8.1.1.4 

ESSL library 3.3.0.6 

The best way to get system software fixes is to use the IBM support web site : http://www-
1.ibm.com/servers/eserver/support/pseries/fixes/. This service is free of charge. See Appendix A for
details about the software management under AIX. 

2.2      Disk space management  
There are 3 different disk space classes at INM and 4 physical disks as seen by AIX.
• hdisk0+hdisk1 form the rootvg volume group that holds the operating system data. This

volume group is mirrored, meaning every disk partition is doubled, providing maximum
security to the system data. 

• hdisk2 is made up of 4 physical disks in the FastT storage unit. This disk is the support for
the uservg volume group that holds the home directories of the users as well as some fast
storage  for  running  forecast  jobs.  This  disk  has  no  redundancy  and  it  is  the  users
responsibility to backup the data until INM implements an automated backup strategy. 

2



• hdisk3 is made up of 6 physical disks in the FastT storage unit. These disks are arranged in
RAID5 mode  which  makes  hdisk3 resilient  to  disk failures.  This  disk holds  the chnvg
volume group which contains all the operational data. 

2.3      Installation of a web server  
We  have  installed,  configured  and started a  web server  on  the  p690 to  host  the  internal

weather  forecast  web  pages  as  well  as  the  documentation  for  the  major  software  products  :
LoadLeveler, Parallel Environment and the compilers. We have used the Apache software as found
on the Linux Toolbox for AIX CDROM. 

2.4      System startup scripts  
We have added two stanzas in the /etc/inittab file to start LoadLeveler and our newly installed

web server when the p690 boots. This is done by adding these two lines at the end of the file.
apache:2:once:/usr/local/bin/apachectl start > /dev/console 2>&1
loadleveler:2:once:/usr/bin/startll > /dev/console 2>&1
Where startll is a script containing the following line :
su -loadl -c  llctl -g start 

3.      Compilation of AL26T1_OP4  
3.1      Starting point  

We used as a  starting point  the directory named cy26t1_op4_main.O1.AIX5.1 which was
saved  as  .cy6t1_op4_main.O1.AIX5.1  for  comparison.  We  set  the  OBJECT_MODE=64
environment variable in the user's profile so that all programs compiled will be 64bit programs.

The next step is to create the top make files : Makefile, Makefile.setp and Makefile.setptun for
the tuned files.  We also create  the bin and lib directories.  Then for each package, we create a
Makefile and the expand and module directories. We use the Makefile structure from Josef Vivoda
from SHMU. The addition we have made to the original Makefiles is to separate the compilation of
the modules from that of the objects. This way we can take advantage of the parallel feature of the
GNU make (gmake) for building the libraries.

We end up with this structure.
cy26t1_op4_main.O1.AIX5.1 
Makefile
      Makefile.setp
      Makefile.setptun
      bin/
      lib/
      xrd/
            Makefile
      tfl/
            Makefile
      arp/
            Makefile
      tal/
            Makefile
      ald/
            Makefile
      tun/

3



                  Makefile 
Here is the top Makefile.
#------------------------------------
#        Top level Makefile 
#------------------------------------
#     ALADIN benchmark ITT2003
#------------------------------------
#    Author: JV, SHMU, 2003 (C)
#------------------------------------
# include makefile with definitions of variables include Makefile.setp
# Ce Makefile permet de construire 2 cibles : tuned et untuned
# name of executable
# exe.t is tuned
# exe is asis 
GMAKE   = gmake -j
EXEO  =   bin/ALADIN.odb
EXET  =   bin/ALADIN.exe.t
EXE   =   bin/ALADIN.exe
BATODB  =       bin/BATODB.exe
all:$(EXE)
$(EXE) : lib/libxrd.a lib/libtfl.a lib/libarp.a lib/libtal.a lib/libald.a
   ar x lib/libarp.a master.o
   mpxlf90_r -o $@ master.o -Llib -lald -larp -ltal -ltfl -lsig -lxrd -llapack -lessl -lmassv -lmass

-brename:.flush,.flush_ -brename:.hostnm,.hostnm_ -qnoextchk -bloadmap:map
   rm -f master.o
$(EXET) : lib/libxrd.a lib/libtfl.a lib/libarp.a lib/libtal.a lib/libald.a lib/libtun.a
   ar x lib/libarp.a master.o
   mpxlf90_r  -o  $@ master.o  -Llib -ltun -lald  -larp -ltal  -ltfl  -lxrd  -llapack -lessl  -lmassv

-lmass -lsig -brename:.flush,.flush_ -brename:.hostnm,.hostnm_
   rm -f master.o
$(EXEO) :  lib/libxrd.a  lib/libtfl.a lib/libarp.a lib/libtal.a lib/libald.a lib/libodb.a lib/libcoh.a

lib/libost.a lib/libsat.a
   ar x lib/libarp.a master.o
   mpxlf90_r -o $@ master.o -Llib -lald -larp -ltal -ltfl -lodb -lcoh -lost -lsat -lxrd -llapack

-lessl -lmassv -lmass -lsig -brename:.flush,.flush_ -brename:.hostnm,.hostnm_ -bloadmap:map
   rm -f master.o
$(BATODB)  :  lib/libxrd.a  lib/libtfl.a  lib/libarp.a  lib/libtal.a  lib/libald.a  lib/libodb.a

lib/libcoh.a lib/libost.a lib/libsat.a lib/libuti.a
   ar x lib/libuti.a batodb.o
   mpxlf90_r -o $@ batodb.o -Llib -luti -lald -larp -ltal -ltfl -lodb -lodbport -lcoh -lost -lsat

-lxrd -llapack -lessl -lmassv -lmass -lsig -brename:.flush,.flush_
      rm -f batodb.o 
# here the EXECUTABLE shall be leaded 

4



#
lib/libtun.a :
   cd tun ; $(MAKE) modules ; $(GMAKE) objects ; $(MAKE)
lib/libxrd.a :
   cd xrd ; $(MAKE) modules ; $(GMAKE) objects ; $(MAKE)
lib/libtfl.a :
   cd tfl ; $(MAKE) modules ; $(GMAKE) objects ; $(MAKE)
lib/libarp.a :
   cd arp ; $(MAKE) modules ; $(GMAKE) objects ; $(MAKE)
lib/libtal.a :
   cd tal ; $(MAKE) modules ; $(GMAKE) objects ; $(MAKE)
lib/libald.a :
   cd ald ; $(MAKE) modules ; $(GMAKE) objects ; $(MAKE)
lib/libodb.a :
   cd odb ; $(MAKE) modules ; $(GMAKE) objects ; $(MAKE)
lib/libcoh.a :
   cd coh ; $(MAKE) modules ; $(GMAKE) objects ; $(MAKE)
lib/libost.a :
      cd ost ; $(MAKE) modules ; $(GMAKE) objects ; $(MAKE) 
clean:
   rm bin/ALADIN.exe
cleanall:
   (cd lib ;  rm -f libald.a libtal.a libarp.a libtfl.a libtun.a libxrd.a libodb.a libcoh.a libost.a

libsat.o)
   (cd ald ; $(MAKE) cleanall)
   (cd arp ; $(MAKE) cleanall)
   (cd tal ; $(MAKE) cleanall)
   (cd tfl ; $(MAKE) cleanall)
   (cd xrd ; $(MAKE) cleanall)
   (cd odb ; $(MAKE) cleanall)
   (cd coh ; $(MAKE) cleanall)
   (cd ost ; $(MAKE) cleanall)
   (cd sat ; $(MAKE) cleanall)
   (cd tun ; $(MAKE) cleanall)
This is the basic Makefile.setp that sets the regular compilation flags 
#------------------------------------
# Makefiles with compilation config
#------------------------------------
#     ALADIN benchmark ITT2003
#------------------------------------
#    Author: JV, SHMU, 2003 (C)
#------------------------------------

5



# path to ALADIN sources under which are xrd, tfl, arp, tal and ald directories
SRCPATH   = /chaine/cycles/cy26t1_op4_main.01.AIX5.1
# include directories (headers) for preprocessor 
CPPINCLUDE =    \
-I$(SRCPATH)/tal/interface \
-I$(SRCPATH)/arp/namelist \
-I$(SRCPATH)/arp/interface \
-I$(SRCPATH)/arp/ald_inc/namelist \
-I$(SRCPATH)/arp/ald_inc/interface \
-I$(SRCPATH)/arp/ald_inc/function \
-I$(SRCPATH)/arp/odb-include \
-I$(SRCPATH)/arp/function \
-I$(SRCPATH)/arp/common \
-I$(SRCPATH)/tfl/interface \
-I$(SRCPATH)/xrd/utilities/include \
-I$(SRCPATH)/xrd/include \
-I$(SRCPATH)/xrd/grib_io/include \
-I$(SRCPATH)/xrd/model_io/include \
-I$(SRCPATH)/xrd/mpe/include \
-I$(SRCPATH)/xrd/lfi \
-I$(SRCPATH)/xrd/fa \
-I$(SRCPATH)/odb/include \
-I$(SRCPATH)/odb/interface \
-I$(SRCPATH)/odb/misc \
-I$(SRCPATH)/coh/include \
-I$(SRCPATH)/coh/common \
-I$(SRCPATH)/ost/include \
-I$(SRCPATH)/ost/interface \
-I$(SRCPATH)/ost/namelist \
-I$(SRCPATH)/ost/common \
-I$(SRCPATH)/sat/include \
-I$(SRCPATH)/coh/namelist 
# include directories (modules + headers) 
INCLUDE =       \
-I$(SRCPATH)/ald/module \
-I$(SRCPATH)/tal/module \
-I$(SRCPATH)/arp/module \
-I$(SRCPATH)/tfl/module \
-I$(SRCPATH)/xrd/module \
-I$(SRCPATH)/odb/module \
-I$(SRCPATH)/odb/misc \
-I$(SRCPATH)/coh/module \

6



-I$(SRCPATH)/ost/module \
-I$(SRCPATH)/sat/module $(CPPINCLUDE)
# preprocessor directives
CPPFLAGS   =   -DRS6K -DALLDBL -DADDRESS64 -DMPI -DBLAS
FCPPFLAGS   =  -DRS6K,-DALLDBL,-DADDRESS64,-DMPI,-DBLAS
QSTRICT=
QSTRICT=-qstrict
QSAVE=-qsave
QSAVE=
OPT=-qmaxmem=-1 -qspillsize=32768
OPT=-O3
# f90 compiler (system dependent compiler switches)
# first precprocessor is called (-Ep) with CPPFLAGS and then 
# compilation is performed using preprocessed source
F77   =   mpxlf_r
F90   =   mpxlf90_r
FFLAGS  =  -WF,$(FCPPFLAGS)  $(INCLUDE)  $(OPT)  $(QSTRICT)  $(QSAVE)

-qarch=auto -qalias=noaryovrlp -qnoextchk -g
# options without amutomatic promotion
# tfl ,arp ,tal and ald libraries are compiled using these switches
FSPFLAG = $(OPT) $(QSTRICT) $(QSAVE) -qarch=auto -qalias=noaryovrlp -qnoextchk -g
# options with automatic promotion R4 -> R8 for xrd library (-A dbl4)
# xrd library is compiled using these switches
FDPFLAG  =       -qautodbl=dbl4  $(O3)  $(QSTRICT)  $(QSAVE)  -qarch=auto

-qalias=noaryovrlp -qnoextchk -g
# c/c++ compiler
CC    =      mpcc_r 
CFLAGS   =   $(CPPFLAGS) $(CPPINCLUDE) -O3 -qstrict -qarch=auto
# shared libraries loading
BUILD =   ar
BDFLAGS   =  -ruv
This is the Makefile.setptun for tuned routines with higher optimization flags.
#------------------------------------
# Makefiles with compilation config
#------------------------------------
#     ALADIN benchmark ITT2003
#------------------------------------
#    Author: JV, SHMU, 2003 (C)
#------------------------------------
# path to ALADIN sources under which are xrd, tfl, arp, tal and ald directories
SRCPATH   = /chaine/cycles/cy26t1_op4_main.01.AIX5.1
# include directories (headers) for preprocessor

7



CPPINCLUDE =    \ 
-I$(SRCPATH)/tal/interface \
-I$(SRCPATH)/arp/namelist \
-I$(SRCPATH)/arp/interface \
-I$(SRCPATH)/arp/ald_inc/namelist \
-I$(SRCPATH)/arp/ald_inc/interface \
-I$(SRCPATH)/arp/ald_inc/function \
-I$(SRCPATH)/arp/odb-include \
-I$(SRCPATH)/arp/function \
-I$(SRCPATH)/tfl/interface \
-I$(SRCPATH)/xrd/utilities/include \
-I$(SRCPATH)/xrd/include \
-I$(SRCPATH)/xrd/grib_io/include \
-I$(SRCPATH)/xrd/model_io/include \
-I$(SRCPATH)/xrd/mpe/include \
-I$(SRCPATH)/xrd/lfi \
-I$(SRCPATH)/xrd/fa \
-I$(SRCPATH)/odb/include \
-I$(SRCPATH)/odb/interface \
-I$(SRCPATH)/odb/misc \
-I$(SRCPATH)/coh/include \
-I$(SRCPATH)/coh/common \
-I$(SRCPATH)/ost/include \
-I$(SRCPATH)/ost/interface \
-I$(SRCPATH)/ost/namelist \
-I$(SRCPATH)/ost/common \
-I$(SRCPATH)/sat/include \
-I$(SRCPATH)/coh/namelist 
# include directories (modules + headers) 
INCLUDE =       \
-I$(SRCPATH)/ald/module \
-I$(SRCPATH)/tal/module \
-I$(SRCPATH)/arp/module \
-I$(SRCPATH)/tfl/module \
-I$(SRCPATH)/xrd/module \
-I$(SRCPATH)/odb/module \
-I$(SRCPATH)/odb/misc \
-I$(SRCPATH)/coh/module \ 
-I$(SRCPATH)/ost/module \
-I$(SRCPATH)/sat/module $(CPPINCLUDE)
# preprocessor directives
CPPFLAGS   =   -DRS6K -DALLDBL -DADDRESS64 -DMPI -DBLAS

8



FCPPFLAGS   =  -DRS6K,-DALLDBL,-DADDRESS64,-DMPI,-DBLAS
# f90 compiler (system dependent compiler switches)
# first precprocessor is called (-Ep) with CPPFLAGS and then 
# compilation is performed using preprocessed source
F90   =   mpxlf90_r
FFLAGS = -WF,$(FCPPFLAGS) $(INCLUDE)  -O3 -qhot  -qarch=auto  -qalias=noaryovrlp

-qnoextchk
# options without amutomatic promotion
# tfl ,arp ,tal and ald libraries are compiled using these switches
FSPFLAG = -O3 -qarch=auto -qalias=noaryovrlp -qnoextchk
# options with automatic promotion R4 -> R8 for xrd library (-A dbl4)
# xrd library is compiled using these switches
FDPFLAG =       -qautodbl=dbl4 -O3 -qhot -qarch=auto -qalias=noaryovrlp -qnoextchk
# c/c++ compiler
CC =  mpcc_r
CFLAGS   =   $(CPPFLAGS) $(CPPINCLUDE) -O3 -qstrict -qarch=auto
# shared libraries loading
BUILD =   ar
BDFLAGS      =      -ruv 

3.2      xrd compilation  
We edit the xrd/not_used/second.F file to fix the call to rtc() whose return value should not be

multiplied by the 4.167E3 factor.
One of the difficulties with xrd compilation is the inter language convention between C and

Fortran. By default, and unlike many other Fortran compilers, the xlf compiler generates symbol
names without a trailing underscore so that a Fortran program can call a C routine with no change.
However, in case the C routine has a trailing underscore in its name, the -qextname option can be
used. To support the -qextname option, most libraries have both the original and the underscore
symbol. This is the case for the Fortran library, the MPI libraries and the MASS library. This is not
the case for the LAPACK library that is installed in INM (and in SHMU, and OMS, and Meteo
Marocco). It appears that, although the IBM convention of keeping the same symbol names between
C and Fortran is simpler, ALADIN in many places assumes that the Fortran compiler adds trailing
underscores. This forces us to alter the C files and add sections like.  

#ifdef RS6K
#else if defined(CRAY)
#define symbol SYMBOL
#else
#define symbol symbol_
#endif
This has become so much common place that ECMWF decided to use the -qextname option

to compile Fortran programs and treats therefore the Fortran compiler on IBM pSeries as ordinary
underscore type compiler. The only library that is missing this feature is the LAPACK library which
I have now rebuilt  to  include both symbols.  I tried to resist  the underscore trend but  this  now
requires too many changes.

The version of AL26T1 is compiled with the no trailing underscore convention but this is
probably the last one. I will now use the -qextname option and the new LAPACK library.

9



To diagnose differences between the argument list in the caller routine and the called routine,
we used the -qextchk compilation and link flag. This option can be turned on to list all routines
which need attention but must be switched off after as a single difference in the argument list will
prevent the link from being performed, even though the difference is “safe”, like passing an array
when only a scalar value is expected for example.

Our first attempt at compiling XRD failed due to a lack of space for temporary files. This is
classical and usually means the TMPDIR environment variable is not set properly. The compiler
writes files to /tmp unless TMPDIR is set in which case it must point to a writable directory.

IMPORTANT : make sure you remove the xrd/mpe/include/mpif.h file as it contains MPI
definitions and constants for Fujitsu ! They have different values on IBM and as we use of the
mpxlf_r, mpxlf90_r and mpcc_r compilers in the Makefile.setp files, we are sure to pick the right
include file for mpif.h.

We  found  some  duplicate  sources  for  some  files.  For  example,  xrd/utilities/
{expand21,pack21}.F  and  xrd/utilities/{expand21,pack21}.s  exist  and  the  .s  version  should  be
removed to pick up the Fortran version. Xrd/grib_mf/gsbite_mf.F and gsbite_mf.c exist. We use the
Fortran version again and rename the C version to something that the Makefile will ignore.

3.3      tfl compilation  
Nothing to say 

3.4      arp compilation     
We found one problem with arp/phys_dmn/suphy2.F90 where a statement 
WRITE(UNIT=KULOUT,*) 'XMULAF SHOULD BE NEGATIVE' 
needs to be changed to 
WRITE(UNIT=KULOUT,FMT=*) 'XMULAF SHOULD BE NEGATIVE' 
We also found when first compiling that some include files, brought by the ost package where

needed.  (int_setparam_obsort.h  and  boot_setparam_obsort.h).  This  is  now fixed  by adding  the
ost/interface directory in the include search path. 

We  also  found  in  arp/control/cprep1.F90  that  the  min  intrinsic  routine  is  called  with
arguments of conflicting types. This is the case for statements like this. 

XX=MIN(YY,1.0) 
where XX and YY are REAL*8 and 1.0 is implicitely a REAL*4 value. We solve this using

the following notation:  
XX=MIN(YY,1.0_JPRB)

3.5      suspeca bug ! Beware !  
This bug keeps creeping in the ALADIN versions. We found it once again in AL26T1 by  

comparing the spectral norms between Fujitsu and IBM. To get rid of this bug, we must declare the
PSPVOR, PSPVB etc arrays as PSPVOR(:,:) in arp/interface/suspec.h, arp/interface/suspeca.h and
arp/setup/suspeca.F90. 

3.6      tal compilation  
Nothing to say. 

3.7      ald compilation  
ald/pp_obs/sufpmove.F90 contains some doubtful calls to BROADCINT where we think they

should be calls to BROADCREAL. 
3.8      libsig compilation  

Our first attempt to link the application shows that we are missing the SIG library. We build it
under ~/util/sig by editing the fortopts  file,  included by the compile  script,  to  set  the path,  the

10



compiler and compiler flags. We then run the compile and buildlib scripts. 
3.9      Dummies  

We create under xrd/support a file called dummy.F90 and one called dummy_odb.F90 to hold
unsatisfied references. 

In arp/c9xx/incli0.F90, we comment out the call to EINCLI8 and write a message to standard
output in case we reach this section.

3.10      argument mismatch  
Using the -qextchk argument, we found a lot of places where routines are called with varying

number  and  types  of  arguments.  Sometimes,  this  is  harmless  and  sometimes  this  could  create
problems. For all cases where the number of argument would differ we print a warning message on
standard error. 

We  make a  list  here  of  the  mismatches.  To keep  a  record  of  these,  use  the  -bloadmap:
themapfile option to create a link map file called themapfile.

• esc2rad  is  called  with  varying  number  of  arguments  in  ald/coupling/elsto1ad.F90,
ald/adiab/espayad.F90 and esc2rad.F90.

• esc2r  is  called  with  varying  number  of  arguments  in  ald/inidata/esc2r.F90,
ald/adiab/espay.F90, arp/adiab/gptenc.F90, ald/var/ewrlsgrad.F90.

• eggx_n  defined  in  ald/utility/eggx_n.F90  is  called  from  arp/setup/sufpd.F90,
arp/utility/echien.F90  and  arp/setup/sufpg2.F90  with  minor  differences  in  the  constants
which are REAL*8 and should be coded as 0._JPRB for correctness.

• abor1  is  called  in  many  places  without  arguments  when  its  definition  contains  one
argument.

• arp/pp_obs/fpachmt.F90  calls  ACCLPH with  18  arguments  instead  of  16.  We  issue  a
message on standard error.   

• arp/var/sujbwavgen.F90 calls  BALNONLIN with 3 arguments instead of 2.  We issue a
message on standard error.

• arp/sinvect/opk.F90 calls CVARU3I and CVARU3IAD without arguments whereas one is
required. We issue a message on standard error.

• arp/ocean/wrcodm.F90  calls  DICOMOUT  with  6  arguments  instead  of  7.  We  issue  a
message on standard error.

• ald/coupling/ebipaux.F90 should pass 0._JPRB as the PALFA argument to ESPLIN instead
of '0'.

• arp/utility/fspglhlag.F90 calls INI2SCAN2M with 19 arguments instead of 21.
• ald/control/cnt4ad.F90  has  a  funny  call  to  PPREQ  with  arguments  of  types

(integer,logical,REAL_B) when we expect (integer,logical,CHAR*120)...
• arp/phys_dmn/acradin.F90 calls RADDIAG with 35 arguments instead of 40 and RADINT

with 42 arguments instead of 50.
arp/phys_dmn/aplpa.F90 calls RADHEAT with 28 arguments instead of 33. 

4.      Execution of ALADIN  
4.1      NPRTRV and NPRTRW are mandatory  

It took us very long time to figure out why a test case would run on 1, 2, 3 processors and
would fail on 4 and 8. We changed a lot of software (compilers, MPI library, AIX), tried hard to
debug to finally find out that this was SUEMP that was creating the problem as it was creating a
processor decomposition where NPRTRV would be something else than 1. The best way to solve
the problem is to force NPRTRV=1 and NPRTRW=NPROC in the NAMPAR0 namelist. 

11



4.2      Namelist changes  
The namelist values that affect the performance of the ALADIN code are given below. 
 &NAMPAR0
   LMPOFF=.FALSE.,
   NOUTPUT=1,
   NPROC=NPROCG,
   NPROCA=NPROCG,
   NPROCB=1,
   NPRTRW=NPROCG,
   NPRTRV=1,
   MP_TYPE=2,
   MBX_SIZE=64000000,
   LIMP=.TRUE.,
   LIMP_NOOLAP=.TRUE.,
 /
 &NAMPAR1
   LSPLIT=.FALSE.,
   NSTRIN=NPROCG,
   NSTROUT=NPROCG,
   NCOMBFLEN=64000000,
   LSLONDEM=.TRUE.,
 /
 &NAMDIM
   NPROMA=-17,

5.      Unsuccessful attempt at compiling ODB  
As the title suggest we tried to compile ODB but with no success. This was not the first

priority so we did not pursue too long. The good think about ODB is that it forced us to compile the
COH, OST, SAT and UTI libraries that revealed some portability problems.  
6.      Workload management strategy     

More important was the design and implementation of a workload management strategy. The
solution that we have used in based on LoadLeveler, WLM (WorkLoad Management from AIX)
and vsrac,  a  tool  developped by IBM Montpellier.  It  is  worth describing WLM here.  Vsrac  is
described in great details in Appendix D.WLM Text (Body)

6.1      WLM description  
WLM is a component  of AIX that can be used (it is not activated by default) to manage

access to resources (CPU, memory and I/O bandwidth) by the different processes running on the
system. The processes are not managed one by one but rather grouped in classes that are defined by
the AIX system administrator. A typical WLM configuration may classify the processes in less than
10 classes. A class can be for example : Interactive, Database, WebServing, etc, corresponding to
the various possible uses of the system resources. In our case, the classes will rather by System,
Development, Operational, ClimateModelling, Research, etc. The purpose of WLM is to make sure
each usage of the system, each WLM class, gets the right share of the system resources. 

WLM has two parts : a classification part and a resource entitlement part. 

12



6.2      WLM classification  
Every running process is classified by WLM according to rules. What is discriminant for

WLM can be the process owner's userid or groupid, the name (path in fact) of the application or
a tag.  For example, we can decide that all  processes belonging to the aladin userid will be
classified in the  “Operational” WLM class. There are default classes in which processes will
fall if no other rule has been satisfied. To verify which WLM class a process belongs to, use the
following ps command. 

ps -e -o class,pid,command,user Text (Body)
6.3      Resource entitlement     

Once WLM is started, all the processes are classified according to the rules set by the AIX
administrator. Now, WLM will make sure that each class gets the share of resources that it is
entitled to. There are 3 ways of managing the resources between classes:  
• – shares
• – limits
• tiers

6.4      Tiers  
This is a very strong way to assign resources to WLM classes. Each class is assigned a Tier

from 0 to 9. All the processes of a lower tier have priority over processes of higher tiers. In other
word, if there are enough processes of a lower tier to fill up a system, then, no process of a class
with a higher tier will ever get the CPU. We have tried this first, assigning the “Operational” WLM
class to Tier0 and the “Interactive” class to Tier9. However, this is too “strong” in the sense that no
single shell command will run while an “Operational” job is running. 

6.5      Limits  
We  can  set  hard  limits  to  the  resources  usage.  For  example,  we  can  specify  that  the

“Interactive” class will not get more than 5% of the total resources and that the “Operational” class
will not get more than 95%. However, if no interactive work is running while the Operational job
runs, the 95% limit will still be in effect, leading to some resources waste. 

6.6      Shares  
The current configuration uses shares to make sure the operational job gets almost all system

resources when it starts. We assign the following shares: 
• Interactive : 50
• Development : 100
• Climate modelling : 50
• Operational: 2000 
The way this works is : we sum up the number of shares of each class that is running and the

resource are assigned to the each WLM class based on its individual share. For example, suppose
we have development  and interactive work running at time t=t0.  The total  number of shares is
50+100 = 150 shares. In this case the “Development” class will get 67% (100/150) of the total
resources and the “Interactive” class will get 33% (50/150). Now, an “Operational” job starts. The
total  number  of  shares  becomes  2000+100+50=2150.  This  time,  and  for  the  duration  of  the
“Operational”  job,  the  interactive  workload  will  get  2%  (50/2150),  the  development  one  5%,
leaving 93% to  the  operational  job.  In effect,  this  almost  freezes  all  the  workloads  except  the
Operational one. 

6.7      WLM adjustment  
Of course, getting the right WLM configuration is an iterative process. There are many other

13



possibilities. For example, the WLM shares can be changed depending on the time of the day :
favoring interactive work during work hours and favoring the development work during the night
time and week-ends. 

6.8      WLM tutorial  
There are a few commands to control WLM. Here they are. 

Action Command 

Start WLM # wlmcntrl -a -d vsrac (to activate the vsrac WLM config) 

Stop WLM # wlmcntrl -o 

Query the WLM status # wlmcntrl -q 

Update the WLM config # wlmcntrl -u (does not stop WLM) 

Configuration files # /etc/wlm/vsrac/ files classes, shares, limits and rules 

7.      CHADA : asynchonous transfer of Meteo France files  
We have ported the CHADA programs that is used to change the date of coupling files so that

slightly obsolete coupling files can still be used for the forecast if the newest files have not been
downloaded. 
8.      Appendix A : Software installation under AIX     

We give here a few tips for querying software levels, installing new software or upgrading
existing software under AIX version 5.

AIX version 5 recognizes three different types of packages : 
• bff or installp : the traditional AIX format, bff stands for binary format file.
• rpm : RedHat package management, well known under Linux. Most of the Open Source

utilities for AIX are distributed as rpms on the “Linux Toolbox for AIX” CD.
• ismp : Windows type install format.
Only the first two types are described below. 

9.      Installp format  
Here are the main installp commands.

Action Command 

Query all installed software # lslpp - 

Query the operating system level # oslevel -r 

List all files belonging to a software # lslpp -f <softwarename> 

Which software does this installed file belong to ? # lslpp -w /full/path/to/file 

Which files does this installable contain ? # restore -Tvf <bfffile> 

 Software numbering under AIX obeys specific rules. A software version number has 4 fields called
V-R-M-F : Version-Release-Maintenance-Fix.  For example in this display :

node8:root}/tmp ->lslpp -l xlfcmp
  Fileset                      Level  State      Description
  --------------------------------------------------------------------

14



Path: /usr/lib/objrepos
  xlfcmp                     8.1.1.2  COMMITTED  XL Fortran Compiler 
Path: /etc/objrepos
  xlfcmp                     8.1.1.2  COMMITTED  XL Fortran Compiler 
we see that the Fortran compiler that is currently installed is 8.1.1.2. Version 8.1.1.0 is called

the base level. In simple terms, the customer pays for the base level and can obtain the fixes (F>0)
with no charge from IBM support web sites. Under AIX, applying fixes is often called applying
PTFs, for Program Temporary Fixes. AIX provides much flexibility for fixes (PTFs) management. 
A fix can be applied (the new files are in effect but the other ones are still there) or committed (the
new files are in effect and the old ones are removed). It's always a good practice to apply but not
commit the fixes so that we can always revert to previous levels in case something goes wrong.

The preferred  way of  managing software  is  through smitty.  A common situation  is  :  the
desired fixes have been downloaded in a directory ready to be installed. The first step is to create a
table of contents of the software products in this directory. This is done using the inutoc command: 

# inutoc .
This command reads all the files in the directory, decides if some are of bff format and then

builds a .toc file describing the software products. The smitty fastpath to software management can
then be invoked :

# smitty installp, then Install Software, then specify '.' as the input device/directory.
You will then choose which of the available software you wish to install, whether or not you

are going to apply or commit the fixes and a few other choices. 

15

 



10.      RPM format  
Here are the main RPM commands. 

Action Command 

Install a RPM # rpm -i <package>-<version>-aix4.3.ppc.rpm 

Upgrade a RPM (installs if not already installed) # rpm -Uvh <package>-<version>-aix4.3.ppc.rpm 

List a package requirements # rpm -q –requires <package> if installed
# rpm -q –requires <package>-<version>-aix4.3.ppc.rpm if
not 

Force install a package, ignoring dependencies
 

# rpm -i –force –nodeps <package>-<version>-
aix4.3.ppc.rpm 

Uninstall a RPM # rpm -e <package> (use the package name, not the name of
a file) 

Query all packages # rpm -qa 

Query a package # rpm -q <package> 

What does this package do ? # rpm -qi <package> 

What does this package, not yet installed, do ? # rpm -qip <package>-<version>-aix4.3.ppc.rpm 

What package does this file belong to ? # rpm -qf /full/path/to/file 

Which files are brought by this package ? # rpm -ql <package> 

Which files are brought by this not yet installed
package 

# rpm -qlp <package>-<version>-aix4.3.ppc.rpm 

Help about rpm # rpm
# rpm  --help 

11.      Appendix B : System backup  
AIX provides a way to create a full system backup that can be reinstalled if needed. This type

of backup is often referred to as a mksysb, named after the command mksysb : make system backup.
A mksysb can be used for reinstalling AIX either on the originating machine or on another system,
which will become a “clone” of the system where the mksysb was taken. A backup can reside on a
tape, a DVD or on disk. A tape or DVD  system backup is bootable and can be used directly to
restore a system. A disk mksysb does not contain all the information and requires a form of network
installation called NIM (Network Installation Manager). A full mksysb consists in four files 

• a kernel
• bosinst.data : Basic Operating System installation data. This file describes what to do upon

installation : overwrite or preserve existing installation, whether to install software bundles,
interactive or batch installation, etc.

• image.data : describes the layout of the file systems when restoring the system.
• backup : contains all the installed file in a backup format. 
To create a bootable system backup, enter : 

16



# smitty mksysb 

Choosing a tape device will make the backup bootable. You can also choose a plain file but be
careful, not to save the backup file in the backup itself. If you choose to save to a file, use a file in a
filesystem that does not belong to the rootvg volume group or use the EXCLUDE files? option
below. mksysb only saves rootvg, not the other volume groups. To list the filesystems that belong to
all your volume groups, use:

$ for vg in $(lsvg)
do
•   echo $vg
•   lsvg -l $vg
done 
You may wish to exclude some unnecessary files from the backup to make it smaller. This is

the purpose of the option “EXCLUDE files?”. If you say yes, which is not at all  necessary,  you
must create a file called /etc/exclude.rootvg that describes which files should not be backup up. Be
careful that the syntax of this exclude.rootvg file is such that it is used in a grep command. For
example, if you have a /tmp/data directory that contains huge files that you do not wish to have in
the mksysb file, and if you are saving the mksysb file under /tmp/mksysb.040404, use the following
syntax for /etc/exclude.rootvg. 

# cat /etc/exclude.rootvg
^.\/tmp\/data\/
^.\/tmp/mksysb.040404 

12.      Appendix C : Users management  
We give here a few tips for managing the groups and users under AIX. If you wish to create a

new user, you must make sure that the group to which you want this user to belong exists. If not,
first create the group with:

# smitty group (then Add a group) 

17



Then create the user with :
# smitty users (Add a user)

  

Fill  at  least  the  userid  (clim001),  the  primary  group  (clim),  the  home  directory
(/users/clim/clim001) and also the limits for this userid. It is advisable to set the memory limits to
unlimited and use LoadLeveler to do the limits management later on.  Scroll down the screen until
you reach the limits section as shown below.

18



 
Once the user is created, you must set  a password either with the passwd command or through
smitty  passwd.  Once  the  password  has  been  set,  if  you do  not  require  the  user  to  change his
password when he first logins, you must run the following command:

# pwdadm -c clim001 
This command clears the ADMCHG flag in /etc/security/passwd which would otherwise force

the user to change his password during the initial login. 
A contrario, if your security policy requires that users change their password, you could issue: 
# pwdadm clim001
Allowing alternate shells for users
The default shell for AIX is ksh : Korn shell. If you wish to enable another login shell, for

example /bin/bash for your users, you must have the required shell listed in the shells section of
the /etc/security/login.cfg when you create the user. The shell is the “Initial program” field of the
smitty users panel. 
13.      Appendix D : vsrac  

Vsrac  is  a  software  tool  developped by IBM Montpellier  which  interfaces  between AIX,
LoadLeveler and Parallel Environment and makes it easy to manage task placement in clusters of
pSeries  systems.  It  helps  implement  various  job  management  policies  to  maximize  the  system
performance. The following pages describe vsrac in great details. 

Installation and usage guidelines for VSRAC (Versatile System Resource
Allocation and Control) 

Contact:

19



Pascal Vezolle:ezolle@fr.ibm.com: (33) 4 67 34 45 41
Jean-Armand Broyelle: abroyelle@fr.ibm.com: (33) 4 67 34 63 75
Francois Thomas: ft@fr.ibm.com:  (33) 4 67 34 40 61 

14.      Overview  
VSRAC is a package that provides means of controlling task placement on clusters of multi

MCM/SCM pSeries AIX systems used in large computing centers. It sits between the IBM HPC
software components (LoadLeveler and Parallel Environment) and the AIX resource management
libraries and tools (CPU Resource Set, WorkLoad Manager). This tool streamlines and simplifies
the usage of AIX Affinity services while providing workload management capability.

VSRAC manages user jobs requesting some amount of resources (number of processes and/or
threads) according to policies that lead to the allocation of target resources. The tool provides a wide
range of resource allocation policies to fit  the maximum of customer production configurations.
Some VSRAC capabilities are not implemented yet and might be depending on customer needs.
The current version does not manage threads placement. 

It is an open source (no fee, capability to change the source). Other features might be added.
The  two  main  features  are  to  guarantee  MCM-affinity  or  to  control  resources  for  both

interactive and batch jobs. To benefit of the memory affinity the processes should be constrained to
run in a single MCM. 

The coming versions of IBM parallel environment and LoadLeveler will bring some features
provides  by  VSRAC.  Parallel  environment  4.1  will  provide  an  environment  variable,
MP_AFFINITY, which will attach each parallel task to a single MCM. This new capability will be
useful  for  running  a  large  MPI  application  on  dedicated  nodes.  In  configurations  where  the
workload is made up of sequential, multi threaded and mpi jobs, installation of such a vsrac tool is
necessary. 

In 2005 LoadLeveler will bring resource set reservation features.  
The VSRAC package consists in a library, driver commands vsrac,  mpp, configuration files

and the  vsem control command. At installation time (rpm package), VSRAC creates a modified
version  of  the  pmdv4  IBM  POE  daemon  (pmdv4vsrac)  as  well  as  entries  in  /etc/services,  /
etc/inetd.conf, /etc/inittab and /etc/security/user. VSRAC creates a RSET configuration. 

Besides the configuration files, several environment variables should be set to activate the
tool, specify job types, resource allocation policies or target resources. 
15.      Installation  

VSRAC comes in a RPM format. We describe the binary RPM installation as well as the
source based installation. 

15.1      Installation of the binary RPM  
Download the appropriate rpm file and install it with: 
# rpm -i --nodeps vsrac-1.0.0-1.aix5.2.ppc.rpm 
It is  important  to use the --  nodeps option when installing the RPM. This  limitation will

disappear in the future. 
To uninstall VSRAC, use the following: 
# rpm -e vsrac 
VSRAC installs itself under /opt/vsrac. It also affects the following system files: 

20



15.1.1  /usr/lpp/ppe.poe/bin/pmdv[3|4]vsrac
a modified version of the IBM Parallel Environment partition manager daemon (pmd). Removed
upon uninstallation. 
15.1.2  /etc/inetd.conf
an entry for the modified pmd daemon is added. Removed upon uninstallation.
15.1.3  /etc/services
port numbers (6136 and/or 6137) are added for the new pmd daemon. Removed upon
uninstallation.
15.1.4  /etc/security/user
the default stanza is modified to allow all users the necessary capabilities to attach processes to
resource sets as shown below : 
capabilities = CAP_NUMA_ATTACH,CAP_PROPAGATE
15.1.5  /var/adm/vsrac
this directory contains the logs file when VSRAC is used in verbose mode. Removed upon
uninstallation. The access right of this file must be 666.
15.1.6 . rsets database
upon installation, VSRAC creates and loads a resource set database that matches the MCM/SCM
topology of the target system. The namespace used for this database is “mcm”. Removed upon
uninstallation. 

15.2      Installation from source code  
In case you wish to rebuild a binary RPM from source code, proceed as follows: 

15.2.1 Install the source RPM
# rpm -i vsrac-1.0.0-1.src.rpm

This creates two files: the tarball and the spec file. The tarball contains the source code. The
spec file is the file used by the rpm command to build the binary RPM. Both files are installed under
/usr/src/packages/ : the former in SOURCES/vsrac-1.0.0.tar.gz and latter in SPECS/vsrac.spec. 

15.2.2 Modify the source code if needed
After  untarring the  /usr/src/packages/SOURCES/vsrac-1.0.0.tar.gz  file,  you may apply the

desired code changes in the vsrac-1.0.0 directory. Once you are ready to rebuild, use the make rpm
target to rebuild the tarball under /usr/src/packages/SOURCES/. 

15.2.3 Rebuild the binary RPM
This is accomplished with the following command:

# rpm -ba /usr/src/packages/SPECS/vsrac.spec

The resulting RPM will be under /usr/src/packages/RPMS/ppc, ready for installation.

15.2.4 Description 
VSRAC tool allows to attach processes to Resource Set, WorkLoad Manager Classes or to

bind  them  to  processors.  The  tool  provides  configuration  files,  environment  variables  and
LoadLeveler interfaces. Configuration files and environment variables are described in detail below.

The  available  policies  are  classified  in  3  classes  based  on  AIX Affinity  services:  CPU
Resource Set,  WorkLoad Manager and  binding. For each policy there are 3 kinds of placement
schemes  that  deal  with  how  the  processes  are  located  on  processors:  default  AIX placement,
populating each MCM sequentially in order to minimize the number of MCMs per job, and round
robin placement on the MCM number (from 0 to number of MCMs -1). 

For  more  details  about  AIX  APIs  take  a  look  on  http://publib16.boulder.ibm.com/cgi-

21



bin/ds_form?lang=en_US&viewset=AIX. 
15.3      Resource Set Policies: rset_mcm, rset_mcm_r, “ret_excl”  

The main idea based on CPU Resource Set is to attach a process to a set of processors to
guarantee  MCM affinity  and  then  keep  Memory affinity.  The  displacement  from an  MCM  to
another of a process leads to a loss of memory affinity and a decrease of the memory bandwidth.
The displacement of the processes might also generate significant fluctuations of the executable
times. To fit the production requirements for High Performance Computing application, VSRAC
provides two policies for attaching processes to CPU resource set: rset_mcm and rset_mcm_r: 

15.3.1 rset_mcm (target: smooth execution time fluctuations): the processes are placed
contiguously, minimizing the number of MCMs used 
15.3.2 rset_mcm_r (target: optimize memory bandwidth): the processes are placed on the MCM
in a round robin way. For MPI jobs, task 0 on the first MCM, task 1 on the second MCM, 

In the next release a new rset_excl policy will be implemented. The processes will be placed
contiguously on a CPU resource set while excluding any other jobs to run on this rset. This feature
will be available in LoadLeveler in 2005. 

The CPU resource set configuration is built at VSRAC installation. The new Rset are called
mcm/mcmX, where X corresponds to the MCM number: mcm/mcm0 for MCM 0, mcm/mcm1 for
MCM1, …, mcm/mcm01 for MCM0 and MCM1, etc. The AIX 5.2 command ‘lsrset –av” displays
the resource set  configuration.  The  number of  Rset  depends on the  number of  MCM or  CSM
available on the system. At the installation VSRAC sets up an rset for each MCM combination. The
aim is to reduce the displacement of the processes across the MCMs. Depending on the number of
CPUs available per MCM and the number of threads of the process, a process can be attached to
several MCM. 

To balance the workload on system and to assign processes to the less loaded MCM, the
occupancy rate of the MCM or the processor must be known at any time. VSRAC manages the
workload from a system semaphore. This system semaphore is created at  installation or at each
reboot of the system from /etc/inittab. This workload management semaphore shows two kinds of
information:  the  number  of  threads  running  per  MCM  and  the  number  of  threads  bound  per
processor. The command “vsem” (described below) displays the current workload and manages the
semaphore. 

VSRAC internal scheduler relies on the current workload from the semaphore to compute the
process location and update the semaphore versus the policy. This scheduler can be disable by an
environment variable “WORKLOAD_RAC=off”. If this variable is set to off, VSRAC scheduler
ignores  the  current  workload  to  compute  process  allocation  and  does  not  updated  the  system
semaphore.  When the variable is  set  to  on,  the process location is  calculated depending on the
workload on each MCM. 

The current version of VSRAC exclusively assigns processes not  thread. Nevertheless the
number of threads per process is used to compute the process location and the workload. 

A user can specify a list  of MCMs or processors on which the processes will be attached
through the environment variable “TARGET_RAC”. 

The environment variable “OVERBOOKING= %” defines the limit beyond that VSRAC does
no  longer  compute  process  location  and  attachment.  This  variable  specifies  the  CPU  over
commitment under which VSRAC will manage the resource allocation and task placement. If the
CPU  workload  becomes  higher,  VSRAC  will  not  attempt  to  place  the  tasks  on  the  rsets  or
processors and let the AIX scheduler manage. It is expressed in percentage. For example, setting it
to 200 will allow VSRAC to manage the task placement until the cpu workload reaches 300% (3
tasks). To balance the workload across MCM, VSRAC scheduler assigns a new process to the less
loaded MCM.  

22



The scheme below shortly outlines the scheduler algorithm. 
Sort current MCM workload on the ascending number of threads already running

for i=1, number of processes
 {
1. try to assign all the threads of the process to a single MCM 
2. if (1  failed )

for j=1, number of threads of process(i)
{

if ( VSRAC over commitment is not reached ) 
Adding the thread to the less loaded MCM
Updating the workload

else
Set the thread as no attachable

endif
                                   }
                         endif
                         if ( round robin scheme ) current MCM++;
            } 
Only  the  jobs  launched  through  VSRAC  are  recorded  in  the  system  semaphore.  In  a

production  mode  environment,  a  partial  usage  of  the  tool  can  generate  a  degradation  of  the
performance, some MCM being able to be overloaded. 

15.4      Workload Manager Policies: ll_wlm, ll_wlm_rset, ll_wlm_rset_r  
It is often difficult to manage a system running both modes: interactively or through a batch

scheduler. WLM classes are meant to deal with this case using WLM features (shares, tiers, rules
and  limits).  This  solution  combines  LoadLeveler  and WLM classes,  the  interactive  jobs  being
usually attached to WLM “default” class. The common configuration is to define WLM classes with
inheritance settings and then to attach the LL “starter” daemon to the matching WLM class. The
attachment of the “starter” takes place in LL prolog. 

Moreover, the coupling of LL and WLM classes allows to use the capabilities of pre-emption
of WLM, the WLM pre-emption being able to be more flexible than the LL pre-emption. This pre-
emption is used to release hardware resources for urgent applications. Usually, the WLM shares and
limits are more suitable to create priority classes than WLM tiers.  

The VSRAC ll_wlm policies have be implemented to attach LL jobs to WLM classes. The
WLM class attachment is realized by LL prolog for serial jobs and “pmdv[3|4]vsrac” process for
MPI jobs. Integrating ll_wlm policies in Parallel Environment allows to put WLM class into general
use, LL prolog is launched on a unique node and can not attached the ‘starter’ process on each node
for a parallel job. 

The matching between LL classes and WLM classes is set in the /opt/vsrac/etc/local.llwlm.cfg
file on each node of the cluster. Such a implementation based on a local configuration allows to tune
the policy regarding the local resources. This file is described in detail below.

On top of a simple attachment to a WLM class (ll_wlm policy), process can be assigned to
CPU resource set in a contiguously way (ll_wlm_rset policy) or in a round robin way versus the
MCMs (ll_wlm_rset_r). 

In the case of ll_wlm policy, VSRAC scheduler is disabled and the workload is controled by
WLM shares and limits.

23



Using VSRAC ll-wlm policies has 2 constraints: 
• It is not compatible with LoadLeveler ConsumableCpus. When ConsumableCpus option is

enabled by LL, the current WLM configuration is rubbed out.
• d.2. WLM classes must have a tag rule.

15.5      Binding Policies: bind_pr, bind_pr_r, ”bind_th, bind_th_r”  
These policies are essentially used for performance issues when running benchmarks. The

processes  are  bound  to  processors.  These  processors  are  given  by  the  user  through
“TARGET_RAC” variable or calculated by the scheduler. The system semaphore maintains the list
of the processors running bound processes.

The capability to bind thread will be implemented later. 
15.6      e.1. VSRAC implementation details  

• VSRAC is based on AIX APIs attaching process to Rset and WLM class or binding to
processor. MPI jobs are directly controlled by a new ‘pmdv’ daemon. 

• Serial, OpenMP and multi-threads interactive jobs are managed by ‘vsrac’ command while
batch  jobs  are  managed  through  LoadLeveler  user  prolog.  The  user  prolog program
increases the system semaphore and creates a temporary file on /tmp containing the value
used to increase the system semaphore. This file is read and removed by the LL user epilog
program while decreasing the system semaphore. 

• MPI jobs are controlled by a new Parallel Environment “pmdv” daemon. In order to not
interfere  with  POE  product  VSRAC  builds  a  new  daemon  pmdv[3|4]vsrac  on  /
usr/lpp/ppe.poe/bin. 

This new daemon is called by setting the poe environment variable
MP_PMDSUFFIX=vsrac. 

The AIX  fork and  execvp subroutines in  poe pmdv have be replaced by  __bdf_fork   and
__bdf_execvp subroutines from VSRAC library /usr/bin/libbd_fork.a.

The system semaphore is updated by each MPI process in __bdf_fork routine. The
 flag “SEMDO’ in the sembuf structure guarantees that the system semaphore will be updated when 
the process stops. 

The  paragraph  below  gives  a  description  of  the  AIX  API  routines  used  in  VSRAC
implementation 

15.7      How to attach a rset with API routines and VSRAC usage  
A resource set is an opaque structure that identifies physical resources. The physical resources

supported by the AIX are CPUs and memory pools; An rset parameter is used in many of the AIX
resource  set  APIs  to  either  get  information  from  the  system  regarding  resources  or  to  pass
information about requested resources to the system. Addition function are provided to examine or
manipulate rsets. Application and job schedulers may attach an rset to a process. Attaching an rset
to a process limits the process to only using the resources contained in the rset. The goal of this part
is  not  to  present  in  details  all  the Rset  API routines but  just  to  outline those used in VSRAC
implementation.  VSRAC  Rset  configuration  is  built  at  installation  or  reboot  which  limits  the
number of API routines. Only 6 rset API routines are needed to manage the VSRAC rset policies:
rs_alloc, rs_getnamedrset, rs_getinfo, ra_execvp, ra_attachrset (AIX 5.2) or ra_attach (AIX 5.1) 

In VSRAC the CPU Resource set are identified by a number: 0 for MCM0, 1 for MCM1, 01
for the merger of MCM0 and MCM1, etc … In API routines a rset is identified by a namespace and
an  rsname. The  rsname (mcm0, mcm1, … in VSRAC) corresponds to the previously registered
name of a resource set. The namespace (mcm in VSRAC configuration) corresponds to the name
space within which rsname is found. 

24



An rset  is  handled  by a  structure  rsethandle_t  defined  in  /usr/lib/include/sys/rest.h.  This
structure must be allocated by the rs_alloc routine.

The rs_alloc subroutine allocates a resource set and initializes it according to the information
specified by the parameter flags. The value of the flags parameter determines how the new resource
set is initialized. In VSRAC the flag is set to RS_EMPTY (or 0 value); rset is initialized to contain
no resources.

The  rs_getnamedrset subroutine retrieves a resource set definition from the system registry.
The namespace and rsname parameters identify the resource set to be retrieved. The rset parameter
identifies where the retrieved resource set should be returned. The rset parameter must be allocated
(using the rs_alloc subroutine) prior to calling the rs_getnamedrset subroutine.

The number of CPU per  MCM is  get from  rs_getinfo routine.  The rs_getinfo subroutine
retrieves  the  resource  set  information  from the  rset  parameter.  Depending  on  the  value  of  the
info_type  parameter,  the  rs_getinfo  subroutine  returns  information  related  to  the  number  of
available processors, the number of available memory pools, or the amount of available memory
contained in the resource rset. 

Syntax example of how to get the number of processors on MCM 0 in VSRAC 
#include <sys/rset>
rsethandle_t rs_alloc (unsigned int flags);
int rs_getnamedrset (char *namespace, char *rsname, rsethandle_t rset);
int rs_getinfo(rsethandle_t rset, rsinfo_t info_type,unsigned int flags);
rsid_t rseth;
int error; 
/* allocation rset structure */
   rseth.at_rset = rs_alloc(RS_EMPTY);
/* attach the rset structure to the mcm/mcm0 rset defined on MCM 0 */
   name_space="mcm";
   name="mcm0";
   error = rs_getnamedrset(name_space,name,rseth.at_rset);  
/* number of processors on MCM 0 */
   error = rs_getinfo(rseth.at_rset,R_NUMPROCS,0); 
/* size of  memory on MCM 0 */ 
   error = rs_getinfo(rseth.at_rset,R_MAXMEMPS,0);  
   … 
The Parallel Environment pmdv program launchs MPI task from the kernel fork and execvp

routines.  The  new program pmdv[3|4]vsrac  from VSRAC  tool  replaces  these  calls  by internal
routines __bdf_fork and __bdf_execvp. Attaching a rset to a process is realized in the __bdf_execvp
using  rset API ra_execvp subroutine. 

 The standard execvp routine is simply substituted by ra_execvp routine. The example below
describes how to attach the mcm/mcm0 rset to a process 

/* allocation rset structure */
   rseth.at_rset = rs_alloc(RS_EMPTY);
/* attach the rset structure to the mcm/mcm0 rset defined on MCM 0 */
   name_space="mcm";
   name="mcm0";
   error = rs_getnamedrset(name_space,name,rseth.at_rset); 

25



   ra_execvp(R_RSET, rseth, 0, executable name, arguments) 
Jobs that are not MPI are assigned to a rset through VSRAC command or LL prolog using rset

API ra_attachrset (AIX 5.2) or ra_attach (AIX 5.1). The example below shows how to attach the
mcm/mcm0 rset to a process. 

/* allocation rset structure */
   rseth.at_rset = rs_alloc(RS_EMPTY);
/* attach the rset structure to the mcm/mcm0 rset defined on MCM 0 */
   name_space="mcm";
   name="mcm0";
   error = rs_getnamedrset(name_space,name,rseth.at_rset); 
/* get process pid */
   …
/* attach the rset in AIX 5.2 */
   error = ra_attachrset(R_PROCESS, pid, rseth.at_rset, 0);
/* attach the rset in AIX 5.1 */
   error = ra_attach(R_PROCESS, pid, R_RSET , rseth, 0); 

15.8      How to attach a WLM class with API routines and VSRAC usage  
The wlm_initialize routine initializes the WLM API for use with an application program. It is

mandatory to call  wlm_initialize  prior to using the WLM API. Otherwise,  all  other WLM API
function calls will  return an error.  If  wlm_initialize is used in a multi-threaded application,  the
routine should be called by the main thread before additional threads are started. 

Two methods are implemented in VSRAC to attach a process to WLM class:
• One process attaches by itself to a WLM class by setting the tag of the class. This method is

used for MPI task. Each MPI task sets the WLM tag in the ‘fork’ routine called by ‘pmdv”
daemon. API name: wlm_set_tag 

• wlm_set_tag  description: The tag is a new attribute of a process that can be set using the
WLM function  wlm_set_tag.  This  tag is  a  character  string with  a  maximum length  of
WLM_TAG_LENGTH (not including the null terminator). Process tags can be displayed
using the ps command. The tag is also one of the process attributes used in the assignment
rules to automatically assign a process to a given class. When an application sets its tag
using  wlm_set_tag,  it  is  automatically  reclassified  according  to  the  current  assignment
rules, and the new tag is taken into account when doing this reclassification. In addition to
the tag itself,  the application can also specify flags indicating to WLM whether a child
process should inherit the tag from its parent after a fork and/or an exec system call. A
process does not require any special privileges to set its tag. 

•  How to assign a process by itself in a WLM class using the tag of the class
                        #include <sys/wlm.h>
                        #include <sys/user.h>

int wlm_initialize (flags);
int wlm_set_tag (tag, &flags);
int flags, error;
char *tag;    /* The address of a character string. An error
               will be returned if his tag is too long */ 
/* WLM API initialization */

26



error = wlm_initialize(WLM_VERSION); 
/* tag setting */

flags=  WLM_VERSION|SWLMTAGINHERITFORK|
SWLMTAGINHERITEXEC;

error = wlm_set_tag( tag, &flags); 
• A process is assigned to a WLM class using the pid. This method is implemented in the LL

‘prolog’ program to attach the LL ‘starter’ process? API name: wlm_assign
•  wlm_assign description: The wlm_assign function is used to:
g.6. Assign a set of processes specified by their process identifiers (pids) or process group

identifiers  (pgids)  to  a  specified  superclass  or  subclass,  thus  overriding  the  automatic  class
assignment or a prior manual assignment.

• Cancel  a  previous  manual  assignment,  allowing  the  processes  to  be  subjected  to  the
automatic assignment rules again. 

• Implementation LL prolog to assign LL ‘starter’ process 
#include <sys/wlm.h>

int wlm_initialize (flags);
int wlm_assign ( & args);
struct wlm_assign args;
int error; 
/* WLM API initialization */
error = wlm_initialize(WLM_VERSION); 
/* starter process assignment */
args.wa_pid_u._pids  = &_starter_pid;            /* LL starter pid */
args.wa_pid_count    = 1;                /* number of pids */     
args.wa_pgid_count  = 0;                                /* number of gpids */
args.wa_versflags     = WLM_VERSION|WLM_ASSIGN_SUPER;
strcpy( args.wa_classname , wlm_class_name );

error = wlm_assign( &args ); 
15.9      How to bind a process with bindprocessor API routine and VSRAC usage  

The bindprocessor subroutine binds a single kernel thread, or all kernel threads in a process,
to a processor, forcing the bound threads to be scheduled to run on that processor. It is important to
understand that a process itself is not bound, but rather its kernel threads are bound. Once kernel
threads are bound, they are always scheduled to run on the chosen processor, unless they are later
unbound. When a new thread is created, it has the same bind properties as its creator. This applies to
the initial thread in the new process created by the fork subroutine: the new thread inherits the bind
properties of the thread which called fork. When the exec subroutine is called, thread properties are
left unchanged.

In VSRAC,  each MPI task is  bound in  fork routine using the option  BINDTHREAD of
bindprocessor subroutine. The array ‘cpu_allocation[i]’ gives to processor number for the MPI task
i. The following lines are includes in VSRAC __bdf_execvp routine of pmdv[3|4]vsrac program:

  #include <sys/processor.h>
   int error;
   error =bindprocessor(BINDTHREAD, thread_self, cpu_allocation[__bdf_ind]); 
For none MPI jobs the bind of the LL starter program takes place in LL prolog.  

27



  #include <sys/processor.h>
   int error;
   error =bindprocessor(BINDPROCESS, (int) “starter pid”, (int) “processor
                        number”); 

16.      Current usage and limitations     
16.1      Limitations  

• AIX 5.1 ML4, LoadLeveler 3.1, Parallel Environment 3.2 and standalone system. The tool
does  not  work  on  cluster.  The  issue  has  been  identified  and might  be  fixed  in  a  next
release.  

• AIX 5.2 LoadLeveler 3.2, Parallel Environment 4.1 
• VSRAC tool has not been tested and validated with the LoadLeveler  llmodify  command,

especially with the option –C specifying a new LL class. 
16.2      Interactive Jobs  

Interactive jobs can be managed by VSRAC under the following conditions: 
• Serial, OpenMP or multithreaded jobs must be started with the vsrac driver command 
• MPI jobs must be started with the mpp command. mpp is a wrapper script around the poe

command that accepts all options of standard poe command. 
16.3      LoadLeveler jobs  

• Loadleveler configuration
To enable VSRAC under  LoadLeveler,  the system administrator  must  activate  a  user  job

prolog and epilog in the LoadL_config file. The following lines must be added: 
• JOB_USER_PROLOG = /opt/vsrac/bin/prolog_vsrac.sh
• JOB_USER_EPILOG = /opt/vsrac/bin/epilog_vsrac.sh 
If user  prolog and  epilog are already being used at your site, make sure you call these two

scripts at the end of you current prolog and epilog. 
17.      LoadLeveler usage  

LoadLeveler job command files need to be changed to activate VSRAC control.  The first
variable to check is MCM_AFFINITY, which can be set globally to “on” in /opt/vsrac/etc/local.cfg)
or locally in the “# @ environment” section of a LoadLeveler job. 

Other VSRAC environment variables must be set in the environment field of LoadLeveler
jobs command files. If they are not set properly, the job  prolog will exit with a bad return code,
preventing the job from running.As VSRAC is an open source tool, this default behaviour can be
easily changed by the customer  to fit  his  production requirements  or  contact  the developers  to
realize the needed modifications.  

Typical ”# @ environment” stanzas of VSRAC enabled LoadLeveler job command files are
listed below. The POLICY_RAC possible values are listed further down. 

VSRAC environment variables in bold are mandatory in #@environment field, the other
can be set in/opt/vsrac/etc/ local.cfg file.

17.1      Serial job  
# @ job_type = serial
#  @  environment  =  COPY_ALL  ;  MCM_AFFINITY=on  ;  \  JOBTYPE_RAC=serial  ;

POLICY_RAC=rset_mcm
17.2      OpenMP job  

# @ job_type = serial

28



#  @  environment  =  COPY_ALL ;  MCM_AFFINITY=on  ;\  JOBTYPE_RAC=openmp ;
POLICY_RAC=rset_mcm ; OMP_NUM_THREADS=8 

17.3      Threaded job  
# @ job_type = serial
# @ environment = COPY_ALL ; MCM_AFFINITY=on ;  \   JOBTYPE_RAC=threads ;

POLICY_RAC=rset_mcm_r ; \ THREADS_TASK_RAC=4 
17.4      MPI job  

# @ job_type = parallel
# @ total_tasks = 4
#  @  environment  =  COPY_ALL  ;  MCM_AFFINITY=on  ;  \  JOBTYPE_RAC=mpi ;

POLICY_RAC=rset_mcm 
MPI-OpenMP job (mixed)
# @ job_type = parallel
# @ total_tasks = 4
# @ environment = COPY_ALL ; MCM_AFFINITY=on ; \
JOBTYPE_RAC=mpi_openmp ; POLICY_RAC=rset_mcm ; OMP_NUM_THREADS=4 
MPI-threaded job (mixed)
# @ job_type = parallel
# @ total_tasks = 4
# @ environment = COPY_ALL ; MCM_AFFINITY=on ; \
JOBTYPE_RAC=mpi_openmp ; POLICY_RAC=rset_mcm ;\
THREADS_TASK_RAC=4  

18.      VSRAC commands  
There are three main VSRAC commands. Two: -  vsrac and mpp -, are intended for general

users and the last one: - vsem -, is for administrators only. They have a corresponding man page. 
18.1      vsrac : vsrac program [args ...]  

VSRAC is a driver program that exploits the task allocation and placement features of
VSRAC. It can be used (or must be used in a global approach) to start serial or multithreaded
(pthreads, OpenMP) programs. The behaviour is driven by environment variables. 

18.2      mpp : mpp [poe args] program [program args]  
mpp is  a  driver  program used to  start  interactive IBM POE jobs.  It  exploits  the task

allocation and placement feature. It has the same function as the VSRAC command for serial or
multithreaded jobs (pthreads or OpenMP). 

18.3      vsem: vsem [-i|-k-o|-w]  
vsem is an utility program that is used to initialize the workload management semaphore,

display the current workload or, - in expert mode only -, kill the semaphore structure or fix the
workload information if needed. Without an option, the default action is -o, display the current
VSRACworkload. 
• Initialize the semaphore structure (experts only)
• Kills the semaphore structure (experts only)
• Outputs the semaphore structure contents
• Writes into the semaphore structure (experts only) 
Here is a sample output. The system is made up of 4 NUMA blocks, each with 2 cpus. The

29



workload per CPU is only reported if processes/threads are bound to the cpus. Otherwise, the load
only appears on a per NUMA block (MCM) basis.

#MCM=4 #cpus/MCM=2
#threads on MCM 0 is 2
#threads on MCM 1 is 2
#threads on MCM 2 is 4
#threads on MCM 3 is 2
#threads bound to CPU 0 is 0
#threads bound to CPU 1 is 2
#threads bound to CPU 2 is 0
#threads bound to CPU 3 is 0
#threads bound to CPU 4 is 1
#threads bound to CPU 5 is 0
#threads bound to CPU 6 is 0
#threads bound to CPU 7 is 0

19.      Environment variables  
20.      Configuration files  

20.1      local.cfg  
/opt/vsrac/etc/local.cfg is the general configuration file for VSRAC. It is read by the VSRAC

libraries and utilities. It might look as follows: 
# This line is a comment
MCM_AFFINITY=off
OVERBOOKING=0
NAME_SPACE_RSET=mcm
WORKLOAD=on
NB_MCM=4
NB_CPU_MCM=2
POLICY=no 
This configuration file specifies default  values for VSRAC. It is created at  boot time and

usually does not need to be changed later on. The variables are described below. MCM_AFFINITY,
WORKSPACE,  OVERBOOKING  and  POLICY  can  be  overwritten  by  environment  variables
(MCM_AFFINITY, WORKLOAD_RAC, OVERBOOKING_RAC, POLICY_RAC).

Upon  boot  up,  the  VSRAC  init  script  will  save  the  previous  configuration  file  in  /
opt/vsrac/etc/local.cfg.last.
20.2      local.llwlm.cfg  

/opt/vsrac/etc/local.llwlm.cfg is  required  to  implement  the  ll_wlm  policies.  It  gives  the
mapping  between  LoadLeveler  classes  and  WLM  classes.  A  sample  file  is  given  in  /
opt/vsrac/etc/local.llwlm.cfg.sample. 

This file gives the WLM class name and tag as well as a VSRAC scheduler option (called
vsrac_workload) for each LoadLeveler class. It must be created by the system administrator before
using the ll_wlm policies. 

If LoadL_class field is set to ‘none’ there is no LL class and jobs are directly assigned to the
corresponding WLM class.

The latest  field  vsrac_workload is  an option in the internal scheduler for ll_wlm_rset and

30



ll_wlm_rset_r policies. If this field is set to “yes” the real workload of the system is not used to
compute the process location on the MCM. When a job is launched in a high priority WLM (low
tier)  the  other  jobs  running  on  the  system  might  be  pre-empted  to  free  resources.  In  this
configuration,  setting  vsrac_workload to  “yes”  allows  to  optimize  the  placement  of  processes
through MCMs.

Local.llwlm.cfg file example: 
#LoadL_class             WLM_class_name      WLM_tag        

vsrac_workload
prod                            prod                            tag1                 

no
test                              test                              tag2                 

yes
night                            night                            night                 

no
none                            day                              tag3                 

yes 
21.      Examples  

21.1      Example 1: Optimizing Memory bandwidth for MPI job  
Some  Computing  Center  does  not  need  to  put  in  place  a  general  strategy  of  resource

allocation. When the workload is dominated by a single MPI application running on a large number
of systems, the priority is to constraint MPI task to a single MCM to guarantee memory affinity. On
single multi MCM system, the MPI task can be attached to a MCM in a sequential way or in a round
robin way. If the number of threads per MPI task is not handled, the only way to avoiding MCM
overloaded is  the round robin  way. Such a policy is  available  in  Parallel  environment  4.1  and
activated by the environment variable MP_AFFINITY.  

This case can also be managed by VSRAC with the simple configuration: 
1. Manually by setting the environment variable MCM_AFFINITY=on 
1.1.Example of /opt/vsrac/etc/local.cfg file on a p690 32 way:

1.1.1.      MCM_AFFINITY=off
1.1.2.      OVERBOOKING=0
1.1.3.      NAME_SPACE_RSET=mcm
1.1.4.      WORKLOAD=on
1.1.5.      POLICY=rset_mcm_r
1.1.6.      NB_MCM=4
1.1.7.      NB_CPU_MCM=2

1.2.Set  MP_PMDSUFFIX=vsrac  in  /etc/environment  or  copy  /
usr/lpp/ppe.poe/bin/pmdv3.vsarc in /usr/lpp/ppe.poe/bin/pmdv3 with the same rights 

2. Automatically 
2.1.Example of /opt/vsrac/etc/local.cfg fileon a p690 32 way:

2.1.1.      MCM_AFFINITY=on
2.1.2.      OVERBOOKING=0
2.1.3.      NAME_SPACE_RSET=mcm
2.1.4.      WORKLOAD=on
2.1.5.      POLICY=rset_mcm_r

31



2.1.6.      NB_MCM=4
2.1.7.      NB_CPU_MCM=2

Set MP_PMDSUFFIX=vsrac in /etc/environment or copy /usr/lpp/ppe.poe/bin/pmdv3.vsarc in
/usr/lpp/ppe.poe/bin/pmdv3 with the same rights 

21.2      Example 2: Managing interactive and batch activities on a single system  
(More on this later…)

21.3      Example 3: Reducing execution time fluctuations for parallel applications  
(More on this later…)
 

Field value Description 

MCM_AFFINITY= on|off 

Set to "on" enables VSRAC usage and to
"off disables it,  letting AIX manage the
resource allocation and control.  "off" is
the  default.  The  value  read  in  the
configuration  file  is  overwritten  by the
MCM_AFFINITY environment  variable
if set. 

OVERBOOKING= integer 

Specify the CPU over commitment under
which VSRAC will manage the resource
allocation  and  task  placement.  If  the
CPU workload becomes higher, VSRAC
will not attempt to place the tasks on the
rsets or cpus and let  the AIX scheduler
manage.  It  is  expressed  in  percentage.
For example, setting it to 200 will allow
VSRAC  to  manage  the  task  placement
until the cpu workload reaches 300% (3
tasks).  The  value  read  in  the
configuration  file  is  overwritten  by the
OVERBOOKING_RAC  environment
variable if set. 

WORKLOAD= mcm 
Name space  used  for  defining the  AIX
resource  sets.  This  is  set  by default  to
"mcm" and should not be changed. 

NB_MCM= integer 

Number  of  SCM/MCM  in  the  system.
Although  the  variable  is  named
NB_MCM, it accounts for the number of
NUMA blocks  in  the  system:  SCM or
MCM.  This  value  is  computed  at  boot
time and should not be hand edited. 

NB_CPU_MCM=  integer 
Number of CPUs of each block (SCM or
MCM) This  value  is  computed  at  boot
time and should not be hand edited. 

32



Field value Description 

POLICY= 

no
rset_mcm
rset_mcm_r
 
ll_wlm
ll_wlm_rset
ll_wlm_rset_r
 
bind_pr
bind_pr_r
bind_th
bind_th_r 

Used as the default allocation policy. It is
set to "no" by default in the configuration
file  which  reverts  to  using  the  default
AIX  scheduler.  The  value  read  in  the
configuration  file  is  overwritten  by the
POLICY_RAC  environment  variable  if
set. 
The  available  policies  are  listed  below.
They can be classified depending on the
target resource that they will allocate to
the job. 
For  more  details  about  policy  read
POLICY_RAC variable description 

LOG_LEVEL 1-4 

This variable set the log verbosity level
in /var/adm/vsrac/logs file:
1 (default): only vsrac errors 
2: 1 + warnings
3: 2 + info messages
4: 3 + debugging messages 

TARGET_RAC List of integers

Give a list of MCM/SCM or processors
on which the processes are placed. If this
variable  is  set,  the  VSRAC  scheduler
does  not  take  into  account  the  current
workload of each NUMA block to place
the  tasks.  It  will  however  update  the
workload consistently. 
-  for  wlm  and  rset  policies: 
TARGET_RAC specifies a list of MCM
or SCM (from 0 to number of MCM-1)
- bind policies: TARGET_RAC specifies
a  list  of  processors  (from  0  to  the
maximum number of processors)

WLMCLASS_RAC wlm class name

Specifies a wlm class name for ll_wlm,
ll_wlm_rset  and  ll_wlm_rset_r  policies.
If this variable is not set vsrac reads the /
opt/vsrac/etc/local.llwlm.cfg file.

33



OVERBOOKING_RAC an integer (in
percent)

specify the CPU overcommitment under
which VSRAC will manage the resource
allocation  and  task  placement.  If  the
CPU workload becomes higher, VSRAC
will not attempt to place the tasks on the
rsets or cpus and let the AIX scheduler
manage.  It  is  expressed  in  percentage.
For example, setting it to 200 will allow
VSRAC  to  manage  the  task  placement
until the cpu workload reaches 300% (3
tasks).
Default value in /opt/vsrac/etc/local.cfg

WORKLOAD_RAC On | off

This  variable  activates  VSRAC
scheduler.  The  processes  are  placed
regarding  the  currently  workload
managed  by  VSRAC.  The  command
vsem displays the current workloadl. 
If the variable is set to off the processes
are  placed  versus  the  policy  with  the
current workload at 0.
Default value in /opt/vsrac/etc/local.cfg

THREADS_TASK_RAC value

Number of threads per process.
This  variable  must  be  set  with
JOBTYPE_RAC=threads  or
mpi_threads.  Default  is  1  thread  per
process

OMP_NUM_THREADS value

Number of threads per process.
This  variable  must  be  set  with
JOBTYPE_RAC=openmp  or
mpi_openmp.  Default  is  1  thread  per
process

34



MP_PMDSUFFIX
(poe environment variable)

vsrac

Determines a string to be appended to the
Partition  Manager  daemon  service,  or
executable (when using LoadLeveler).
The  PMD  service  in  /etc/services  is
named pmv4. By setting
MP_PMDSUFFIX,  you  can  append  a
string to  pmv4.  If  MP_PMDSUFFIX  is
set to VSRAC, the service requested in /
etc/services is pmv4vsrac.
When  using  LoadLeveler,  the  string  is
appended to the partition manager
daemon executable name, /etc/pmdv4.

JOBTYPE_RAC serial
openmp
threads
mpi
mpi_openmp
mpi_threads

The type of the job

POLICY_RAC No
 
rset_mcm
rset_mcm_r
rset_excl
 
ll_wlm
ll_wlm_rset
ll_wlm_rset_r
 
bind_pr
bind_pr_r
bind_th
bind_th_r

Set VSRAC allocation policy. It is set to
"no" by default  in  the configuration file
which  reverts  to  using  the  default  AIX
scheduler.  The  default  is  set  in  /
opt/vsrac/etc/local.cfg. If not listed in the
local.cfg, the dedault is no.
 
The  available  policies  can  be  classified
depending on the target resource that they
will allocate to the job. 
There are 3 policies classes based on AIX
Affinity services: rset, WLM and binding.
For  each  policies  there  are  3  types
placement  schemes  specifying  how  the
processes  are  located  on  processors:
default  AIX  placement,  continuous  and
round robin placement on the MCMs . 

 No default policy, AIX scheduler 

35



RESOURCE SET Policies (MCM/Memory Afinity) 

 
 
 
 
 

rset_mcm This policy attaches the processes/threads
of the job to an AIX resource set defined
on the MCMs, the processes are placed in
order  to  populate  each  MCM
sequentially,  minimizing  the  number  of
MCMs.  The resource sets  are created at
boot  time  by  the  VSRAC  initialization
script.
This  target  is  to  try to  guarantee  MCM
affinity  and  no  losing  memory  affinity
during execution.
Compatible  with  LoadLeveler
ConsumableCpus. 

 rset_mcm_r this  policy  is  similar  to  rset_mcm,  the
only  difference  is  that  the  process  are
located  on  MCM  in  round  robin
allocation way 

 rset_excl Resource  rset  exclusive  policy.  The
processes  are  placed  contiguously  on  a
CPU  resource  set  while  excluding  any
other jobs to run on this rset.
Not  yet  implemented  in  VSRAC.  This
feature  will  be  available  natively in  the
next LoadLeveler version. 

WorkLoad Manager Policies (Workload control + MCM/Memory affinity) 

36



 ll_wlm this  policy  is  used  to  assign  a
LoadLeveler class to a WLM class. With
this policy, the VSRAC internal scheduler
is disabled.
The LL/WLM configuration is defined in
the  local.llwlm.cfg  file  under  /
opt/vsrac/etc/.
Not  compatible  with  LoadLeveler
ConsumableCpus. 

 ll_wlm_rset This policy is the same as ll_wlm adding
process  placement  with  VSRAC
scheduler.  As a  supplement  to  a  simple
attachment to WLM class, process can be
assigned  to  CPU  resource  set.  The
processes  are  allocated  continuously  on
MCMs,  minimizing  the  number  of
MCMs per job.
Not  compatible  with  LoadLeveler
ConsumableCpus. 

 ll_wlm_rset_r Same as ll_wlm_rset expect round robin
placement on MCMs
Not compatible with LoadLeveler
ConsumableCpus. 

Binding (CPU affinity) 

 bind_pr this  policy  binds  the  processes  to
individual  processors.  The processes  are
attached to processors continuously.

 bind_pr_r this policy is similar to the previous one,
the only difference is that we use a round
robin allocation scheme, maximizing the
number of MCM blocks used. 

 bind_th the policy is to bind the job's threads to
individual  processors.  The  threads  are
placed on contiguous processors.
Not yet implemented
 

 bind_th_r Idem bind_th policy, the only difference
is  that  we  use  a  round  robin  allocation
scheme
Not yet implemented

37



MCM_AFFINITY On | off

set it  to "on" to enable VSRAC globally
and  to  "off  to  disable  it,  letting  AIX
manage  the  resource  allocation  and
control.  The  default  is  set  in  /
opt/vsrac/etc/local.cfg. If not listed in the
local.cfg, the dedault is off.

VSRAC Environnent variables
MCM_AFFINITY
POLICY_RAC
JOBTYPE_RAC
THREADS_TASK_RAC
WORKLOAD_RAC
TARGET_RAC
WLMCLASS_RAC
OVERBOOKING_RAC
MP_PMDSUFFIX=vsrac
LOG_LEVEL

Key to obtaining the desired performance, I installed vsrac : a task placement tool developed
by IBM Montpellier.

The disk layout was ready too with three main partitions:
• /TMP, a fast RAID0 file system for use by programs requiring fast IO on temporary files.
• /users, a safe RAID5 file system for the HOME directories of the users.
•  /oper, a safe RAID5 file system whose projected use is to hold the data produced by the

operational forecast over an extended period of time.
We then installed an archive of the work performed in our benchmark centers, our starting

point for the acceptance test.
Prior to running the acceptance tests, we created a basic LoadLeveler configuration and started

the daemons. In the event of a system restart, these daemons are not automatically started and as
root, the following commands would be necessary:

 # su – loadl
$ llctl -g start
Acceptance test results and log files
The acceptance test comprises 4 parts:
• benchmark runs of lancelot in asis and tuned mode
• benchmark runs of morgane in asis and tuned mode compilation and linking time 
• switchover test between an operational job and a research job, both running 32

way 
We  present  here  the  results  we  obrained  as  well  as  the  results  we  got  in  our

benchmark centers last year.

38



22.      Benchmark runs  
Note: no tuning was applied to the lancelot runs so we only ran the asis test. 

23.      Performance data  

Benchmark Contractual time (s) Time obtained in Bratislava (s)
lancelot asis 77 77
morgane asis 1471 1488
morgane tuned 1293 1304

Part of the slight difference between the two timings (1%) could be reduced by using a faster
file system than the one we used. This was not judged critical for the acceptance test but  this will be
applied to the operational suite. 

Benchmark Log file location
lancelot asis ~aladin/shmu/listing/lancelot-bratislava
morgane asis ~aladin/shmu/listing/morgane-bratislava-untuned-affinity-rac
morgane tuned ~aladin/shmu/listing/morgane-bratislava-tuned-affinity-rac

24.      Compilation and link  
These timings were obtained prior to the parallelization of the building process described later

on. Due to some problems in the initial Makefile, the compilation proceeds in two steps. To look for
the timings for each step : compile (phase1), compile (phase2) and link, use the grep command and
look for the “real<TAB>” string in the log file. 

Test name Contractual time (s) Time obtained in Bratislava (s)
compilation 2575 2498

link 1 1

Test name Log file location
compilation and link ~aladin/shmu/src/compile.log

25.      Switchover  
The research job  is  started first.  The  operational  job  preempts  the  research job using the

LoadLeveler preemption mechanism.  We used the  asis  version of  ALADIN for  both jobs.  The
timings are listed below. “Total time” is the time from submission of the job till completion. In the
case of the research job, this is of course much larger than the “Real time” as the research job is
preempted by the operational job. 

Test name Total time (s) Real time (s)
research 3080 1498

Operational 1566 1566

Benchmark Log file location
operational run ~aladin/shmu/oper/listing/morgane-untuned-gang
research run ~aladin/shmu/research/listing/morgane-untuned-gang

Note 1 : the preemption mechanism used is that of LoadLeveler. This is used at the Hungarian

39



Meteorological Service (HMS). Until very recently, this did not prove to be entirely satisfactory in
production.  However,  we  may  have  discovered  the  reason  for  the  LoadLeveler  preemption
instability and solved the problem which was apparently not related to LoadLeveler itself. It is still
too early to state that the problems encountered at HMS have disappeared as we need to observe the
behavior for a longer period of time. 

The  preemption  can  be  implemented  with  a  different  scheme,  using  a  combination  of
LoadLeveler and AIX Workload Management (WLM) with possibly some benefits regarding the
global throughput of the system. We are experimenting extensively these aspects and we will be
able  to  propose  the  “best”  solution  for  managing  the  workload  and  satisfy  the  customer
requirements:

• absolute priority for the operational job
• ensure the compute time needed to run the operational forecast is constant, whichever the

current workload of the system when the operational job is started
• enable interactive usage of the system during the day
• enable batch jobs to run over extended periods of time
•  maximize the usage of the system 
Note 2 : as seen in the timings table, the time to run the operational forecast is slightly bigger

than the time to run the research job. This is being investigated but is apparently related to the
difference in filling of the 4 memory pools (memory attached to each MCM).
26.      Code tuning  

As already detailed in the initial benchmark report, we have applied some tuning to AL25T2.
The  main  changes  are  related  to  the  use  of  the  vectorized  version  of  the  MASS  library
(http://techsupport.services.ibm.com/server/mass/). This library implements mathematical functions
(sin, cos, atan, log, exp, etc) in a particularly fast way. Even faster is the use of the vector functions
where the operands are vectors instead of scalars. This was applied to the accvimp and accvimpd
routines.

Also, we have made changes to fft992 so that we call, whenever possible the ESSL version of
the Fast Fourier Transforms. Unfortunately, ESSL does not support every vector length for the FFTs
and in the past the code would fail if the length was not supported by ESSL. We have improved this
by checking whether the FFT length is acceptable for ESSL and if not, we revert to the classical
fft992  routine.  This  tuning  resides  under  the  ~aladin/shmu/src/tun/xrd  or
~nwp001/al26t1_op5/tun/xrd directories.

There is a scope for potential tuning in the accvimp and accvimpd routines that has not been
explored yet. The idea is to concatenate multiple one dimensional temporary arrays into fewer bi
dimensional  arrays. This is  very likely to help the memory accesses by limiting the number  of
streams between the L1 caches and the physical memory. If time permits, I will try to implement
this in Tunisia and measure the impact.
27.      Compilation of some graphics packages  

We have successfully compiled PALADIN, GMT and GRIBEX on the system. The latter
required the use of an additional flag for pbio to specify that the default size for a Fortran integer is
the same as a C int (-DINTEGER_IS_INT). If this is not specified, pbio uses C long integers for
Fortran integers. In 32bit compilation mode, this is correct as a long is 32bit long, just like a Fortran
INTEGER but in 64bit compilation mode, a C long integer becomes 64bit long. This is summarized
in the table below.

Type Size in 32bit compilation mode
(OBJECT_MODE=32)

Size in 64bit compilation mode
(OBJECT_MODE=64)

C int 32bit 32bit

40



Type Size in 32bit compilation mode
(OBJECT_MODE=32)

Size in 64bit compilation mode
(OBJECT_MODE=64)

C long 32bit 64bit
C long long 64bit 64bit

Fortran INTEGER 32bit 32bit

NCAR graphics still needs to be installed. This could be done, either using binaries compiled
for a previous version of AIX or by compiling from source code. NCAR graphics has already been
compiled under AIX version 5 at various meteos : Tunisia, Morocco, Turkey. I will send a copy of
what was done in Tunisia, or at least give the instructions on how to recompile the package. 

28.      Attempt to compile AL26T1_OP5  
We tried to compile the latest version of ALADIN. Unfortunately, there seems to be issues

when  running  the  morgane  configuration.  We  discovered  some  inconsistencies  between  the
definition of some routines and the way they are called. To check all occurrences of this problem,
one could use the -qextchk compiler option at compile and link time.

However,  this  is  during  the  compilation  of  AL26T1_OP5 that  we improved the  building
process by enabling the use of the parallel feature of the GNU make (gmake -j). Each package is
now built using two targets : first the modules and then the regular object files. The first target is
built with the regular, sequential invocation of gmake but the second one is performed in parallel.
The  level  of  parallelism is  controlled  by the  optional  argument  to  the  -j  switch  of  the  gmake
command. If no argument is specified, gmake will build in parallel as many targets as there are
processors.

I will have a chance to compile and link AL26T1_OP4 or OP5 for the Tunisian meteo. The
lessons learnt there will be transferred to SHMU. 
29.      Getting the right performance  

As described during informal discussions, the p690 system is made of 4 blocks, each with 8
processors (Multi Chip Module or MCM) and 8 G bytes of memory, spread over 2 memory cards.
The 4 blocks are linked with a very high speed interconnection which ensures fast memory accesses
from processes  which  are  executing  from  distant  blocks  (MCM).  Nevertheless,  local  memory
accesses  are always faster  and should be preferred in all  cases.  We will  learn in the following
discussion how to ensure that this happens for the 32 MPI tasks that make up a morgane run.

Our first attempt to run morgane gave a total time of 1626s for the untuned version, compared
to the 1471s that we obtained last year in our benchmark center, a difference of 10.5%. 
30.      Check the configuration  

The first action was to check the configuration. In our benchmark center, we had 128GB of
memory in 8 memory cards of 16GB each compared to the 8 memory cards of 4GB each in SHMU.
The difference between 4GB and 16GB memory cards is that the 4GB cards have a single port
whereas the 16GB are double ported, leading to higher memory bandwidth. We have observed up to
15% difference  for  applications  doing  only memory transfers  and  usually  around  5%  for  real
applications where not  all  floating point  operations lead to memory transfers as is  the case for
ALADIN.

Here are a few commands for checking the configuration.
$ bindprocessor -q (lists the on line processors)
$ lscfg -vp |grep memory-controller (gives the number of memory cards)
$ lsattr -El sys0|grep realmem (gives the total amount of memory) 

41



31.      Memory affinity  
Memory affinity is an AIX feature by which, when a process touches a page for the first time,

this page is allocated in the memory local to the process. This must be enabled in the kernel with the
following command.

# vmo -y 1
However, with this scheme, if a process moves from one MCM to the other, it may allocate

memory in a few different MCMs. This setting was already in effect on the system. 
32.      Memory affinity – improved  

To  ensure  all  the  pages  allocated  by  a  process  reside  on  one  single  MCM,  the
MEMORY_AFFINITY environment must be set to MCM.

$ export MEMORY_AFFINITY=MCM
Using this, we ran in 1567s, now 6.5% off the target 

33.      Memory affinity and task placement  
Now that the memory is allocated on one single MCM, we have to ensure that the processes

do not move from one MCM to the other. By default, the AIX scheduler tries to reschedule the
processes on the processors where they were running before but this is not guarantied. Indeed, when
looking at the error file from the morgane run, we see that the time per iteration increases. During
the  run,  when  system daemons  start  for  example,  our  MPI  tasks  may be  scheduled  on  other
processors and even other MCMs loosing the benefits of memory affinity. The tool developed by
IBM Montpellier  :  vsrac  is  here  to  constrain  the  tasks  to  remain  on  the  same  MCM.  This  is
accomplished simply with the setting of some environment variables in the mpirun script. We need
to set: 

$ export MEMORY_AFFINITY=MCM
$ export MCM_AFFINITY=on (activate our vsrac tool)
$ export JOBTYPE_RAC=mpi
$ export POLICY_RAC=rset_mcm
Using these settings, the timing was down to 1514s, 3% off the target. 

34.      Using the latest compiler  
After recompiling the code with the latest compiler (xlf 8.1.1.3), the time was down to 1488s,

1% off the target. 
35.      Job preemption strategies and tests  

There are currently two possible strategies for implementing the job preemption required for
regular production forecasts. One uses the native preemption capability of LoadLeveler. The other
one uses a combination of LoadLeveler and Workload Manager (WLM). 
36.      LoadLeveler-only preemption  

LoadLeveler can suspend already running jobs when a high priority job is submitted. The high
priority job will run immediately till completion. When the job finishes, LoadLeveler will resume
the suspended jobs. This scheme is used in production at HMS. As stated before, we need to collect
information from HMS to see if the problems encountered in the past have disappeared completely.

The main drawback of this scheme is that it is not immune to the interactive workload that is
running on the system when the high priority job starts. To protect ourselves from the interactive
users, i.e. from processes started outside of LoadLeveler jobs, we limit any interactive shell to a
small amount of CPU time, discouraging people from starting long running interactive commands.

To allow for such commands (compilations, post-processing, etc) that would exceed the CPU
time limit, a simple shell script called i has been written. This script will create a LoadLeveler job
command file to run the command passed as an argument. For example, to run a compilation that
could take a long time, we use:

42



$ i make ALADIN.exe
The same command invoked without the i script would probably fail as it would exceed the

CPU time limit. 
37.      LoadLeveler-WLM preemption  

37.1      WLM principles  
WLM is a very powerful workload control mechanism used by AIX. Simply stated, WLM

assigns processes to classes according to customizable rules. WLM ensures that the various classes
use resources according to predefined shares and limits.

37.2      Possible LoadLeveler–WLM configuration  
The simplest configuration for job preemption would work as follows. We would define three

WLM classes : “prod” for the operational jobs submitted by LoadLeveler, “other” for all the other
batch jobs submitted by LoadLeveler and “inter” for interactive jobs, namely any other user process
not submitted via LoadLeveler.

Now, by configuring properly the relative priorities of the “prod”, “other” and “inter” WLM
classes, we can implement the job preemption as well as arbitrate the amount of CPU power for
regular batch jobs (class “other”) and interactive usage (class “inter”). The partition between “other”
and “inter” can even be changed dynamically, allocating more resources for the interactive usage
during the day and less during the night.

Our first tests in SHMU were quite successful, leading to a maximum thruput of the system
(the suspended job still gets some CPU cycles when the high priority job pauses for example for
IO). The slight drawback is that, for the same reason, the preemption is not as sharp as with the
LoadLeveler-only case. More tests need to be performed to decide on the best scheme to use, but
certainly the LoadLeveler-WLM way appeals by its simplicity and the fact that interactive users
need not worry about the commands they launch. 
38.      Additional system tasks  

38.1      Virtual memory tuning  
For large memory jobs like ALADIN, it is important to favor process pages over file system

buffer  pages in  memory. AIX will  attempt  to  cache in  memory as  much file  data  as  possible,
sometimes leading to processes paging in and out because the memory is full with file pages. We
suggest running the following command as root:

# vmo -p -o minperm%=1 -o maxperm%=5 -o minclient%=1 -o maxclient%=5
# ioo -p -o maxpgahead=512 -o j2_maxPageReadAhead=512

38.2      bos.pmapi  
This AIX package contains the kernel extension, libraries and header files needed for some

hardware  performance  monitoring  tools  that  will  be  described  and  used  during  the  parallel
programming class to be held in March. It would be useful to install this package on the system
before the class runs.

38.3      Remote access to the system  
As mentioned  during  my stay,  it  could  be  useful  for  me  to  access  the  system remotely,

possibly using ssh or through a modem connexion.
39.      Hints and tips  

39.1      Soft limits  
We found (the hard way) that the Fortran runtime library now enforces the soft limit for the

stack. This is a new behavior that needs to be taken into account. Instead of requiring the system
administrator to change the soft limits for every newly created user, we added default limits in /
etc/security/limits.

43



39.2      Core files  
To  limit  the  size  of  the  core  files  when  ALADIN crashes,  one  may  use  the  following

environment variable:
$ export MP_COREFILE_FORMAT=core
This is implemented in the ~nwp001/bin/mpirun script. To recover the regular behavior, just

unset this variable.
40.      Parallel make command  

To speed up the compilation of complex packages, we can make use of a nice feature of the
GNU make command. From the man gmake command, we get: 

       -j jobs
            Specifies the number of jobs (commands) to run simultaneously.  If
            there is more than one -j option, the last one is effective. If
            the -j option is given without an argument, make will not limit
            the number of jobs that can run simultaneously.
For example, to simultaneously build four targets, use:
$ gmake -j 4  

44



CONTENTS

1.Summary............................................................................................................................................2
2.System tasks...................................................................................................................................... 2
2.1Software upgrade........................................................................................................................... 2
2.2Disk space management................................................................................................................ 2
2.3Installation of a web server............................................................................................................3
2.4System startup scripts.................................................................................................................... 3

3.Compilation of AL26T1_OP4........................................................................................................... 3
3.1Starting point................................................................................................................................. 3
3.2xrd compilation..............................................................................................................................9
3.3tfl compilation..............................................................................................................................10
3.4arp compilation ........................................................................................................................... 10
3.5suspeca bug ! Beware !................................................................................................................ 10
3.6tal compilation............................................................................................................................. 10
3.7ald compilation............................................................................................................................ 10
3.8libsig compilation........................................................................................................................ 11
3.9Dummies......................................................................................................................................11
3.10argument mismatch....................................................................................................................11

4.Execution of ALADIN.................................................................................................................... 11
4.1NPRTRV and NPRTRW are mandatory..................................................................................... 11
4.2Namelist changes......................................................................................................................... 12

5.Unsuccessful attempt at compiling ODB........................................................................................ 12
6.Workload management strategy ..................................................................................................... 12
6.1WLM description.........................................................................................................................12
6.2WLM classification..................................................................................................................... 13
6.3Resource entitlement .................................................................................................................. 13
6.4Tiers............................................................................................................................................. 13
6.5Limits...........................................................................................................................................13
6.6Shares...........................................................................................................................................13
6.7WLM adjustment......................................................................................................................... 14
6.8WLM tutorial............................................................................................................................... 14

7.CHADA : asynchonous transfer of Meteo France files................................................................... 14
8.Appendix A : Software installation under AIX .............................................................................. 14
9.Installp format..................................................................................................................................14
10.RPM format................................................................................................................................... 15
11.Appendix B : System backup........................................................................................................ 16
12.Appendix C : Users management.................................................................................................. 17
13.Appendix D : vsrac........................................................................................................................ 19
14.Overview....................................................................................................................................... 19
15.Installation..................................................................................................................................... 20
15.1Installation of the binary RPM...................................................................................................20

15.1.1 /usr/lpp/ppe.poe/bin/pmdv[3|4]vsrac

45



a modified version of the IBM Parallel Environment partition manager daemon (pmd). Removed
upon uninstallation. ........................................................................................................................... 20

15.1.2 /etc/inetd.conf
an entry for the modified pmd daemon is added. Removed upon uninstallation............................... 20

15.1.3 /etc/services
port numbers (6136 and/or 6137) are added for the new pmd daemon. Removed upon uninstallation.
............................................................................................................................................................ 20

15.1.4 /etc/security/user
the default stanza is modified to allow all users the necessary capabilities to attach processes to
resource sets as shown below : 
capabilities = CAP_NUMA_ATTACH,CAP_PROPAGATE........................................................... 20

15.1.5 /var/adm/vsrac
this directory contains the logs file when VSRAC is used in verbose mode. Removed upon
uninstallation. The access right of this file must be 666.................................................................... 20

15.1.6. rsets database
upon installation, VSRAC creates and loads a resource set database that matches the MCM/SCM
topology of the target system. The namespace used for this database is “mcm”. Removed upon
uninstallation. .................................................................................................................................... 20
15.2Installation from source code.....................................................................................................20

15.2.1b.1. Install the source RPM..................................................................................................20
15.2.2b.2. Modify the source code if needed................................................................................. 21
15.2.3b.3. Rebuild the binary RPM............................................................................................... 21
15.2.4b.4. Description     ...................................................................................................................21

15.3Resource Set Policies: rset_mcm, rset_mcm_r, “ret_excl”....................................................... 21
15.3.1rset_mcm (target: smooth execution time fluctuations): the processes are placed

contiguously, minimizing the number of MCMs used     ...................................................................... 21
15.3.2rset_mcm_r (target: optimize memory bandwidth): the processes are placed on the MCM

in a round robin way. For MPI jobs, task 0 on the first MCM, task 1 on the second MCM,     ............ 21
15.4Workload Manager Policies: ll_wlm, ll_wlm_rset, ll_wlm_rset_r........................................... 23
15.5Binding Policies: bind_pr, bind_pr_r, ”bind_th, bind_th_r”..................................................... 23
15.6e.1. VSRAC implementation details..........................................................................................23
15.7How to attach a rset with API routines and VSRAC usage.......................................................24
15.8How to attach a WLM class with API routines and VSRAC usage.......................................... 25
15.9How to bind a process with bindprocessor API routine and VSRAC usage............................. 27

16.Current usage and limitations ....................................................................................................... 27
16.1Limitations.................................................................................................................................27
16.2Interactive Jobs.......................................................................................................................... 27
16.3LoadLeveler jobs....................................................................................................................... 27

17.LoadLeveler usage.........................................................................................................................28
17.1Serial job....................................................................................................................................28
17.2OpenMP job...............................................................................................................................28
17.3Threaded job.............................................................................................................................. 28
17.4MPI job...................................................................................................................................... 28

18.VSRAC commands....................................................................................................................... 29

46



18.1vsrac : vsrac program [args ...]...................................................................................................29
18.2mpp : mpp [poe args] program [program args]..........................................................................29
18.3vsem: vsem [-i|-k-o|-w]..............................................................................................................29

19.Environment variables...................................................................................................................29
20.Configuration files.........................................................................................................................29
20.1local.cfg..................................................................................................................................... 29
20.2local.llwlm.cfg........................................................................................................................... 30

21.Examples....................................................................................................................................... 30
21.1Example 1: Optimizing Memory bandwidth for MPI job......................................................... 30
21.2Example 2: Managing interactive and batch activities on a single system................................31
21.3Example 3: Reducing execution time fluctuations for parallel applications............................. 31

22.Benchmark runs.............................................................................................................................38
23.Performance data........................................................................................................................... 38
24.Compilation and link..................................................................................................................... 38
25.Switchover..................................................................................................................................... 39
26.Code tuning....................................................................................................................................39
27.Compilation of some graphics packages....................................................................................... 40
28.Attempt to compile AL26T1_OP5................................................................................................ 40
29.Getting the right performance........................................................................................................41
30.Check the configuration.................................................................................................................41
31.Memory affinity.............................................................................................................................41
32.Memory affinity – improved..........................................................................................................41
33.Memory affinity and task placement............................................................................................. 41
34.Using the latest compiler............................................................................................................... 42
35.Job preemption strategies and tests............................................................................................... 42
36.LoadLeveler-only preemption....................................................................................................... 42
37.LoadLeveler-WLM preemption.....................................................................................................42
37.1WLM principles.........................................................................................................................42
37.2Possible LoadLeveler–WLM configuration.............................................................................. 42

38.Additional system tasks................................................................................................................. 43
38.1Virtual memory tuning...............................................................................................................43
38.2bos.pmapi...................................................................................................................................43
38.3Remote access to the system......................................................................................................43

39.Hints and tips.................................................................................................................................43
39.1Soft limits.................................................................................................................................. 43
39.2Core files....................................................................................................................................43

40.Parallel make command.................................................................................................................43

47


