

First tests of SLAF and Stochastic Physics in GLAMEPS

J. A. García-Moya & C. Santos NWP - Spanish Met Service - AEMET

Hirlam – Aladin All Staff Meeting Brussels – 7–10 April 2008

Introduction

- Testing the framework of GLAMEPS
- Very crude implementation
- 15 days parallel test:
 - * 2007100100 2007101500
- Area EPS71 and 10 members + control
- 72 hours forecast at 00 and 12 UTC
- Experiments:
 - * EPS → Standard downscaling of ECMWF EPS.
 - \bullet SLF → SLAF
 - ★ TEP \rightarrow TEPS (met.no)
 - STP → Stochastic Physics + EPS
 - STF → Stochastic Physics + SLAF
 - TEF → Stochastic Physics + TEPS (met.no)

SLAF - Errors H+48

- * SLAF (AN \pm K · (AN FCHH), k=cte.)
- Experiments:
 - Control
 - 1 and 2
 - 3 and 4
 - * 5 and 6
 - 7 and 8
 - 9 and 10

- ANP = AN
 - ANP = AN \pm 2.5 · (AN-FC12)
 - $ANP = AN \pm 2 \cdot (AN-FC24)$
 - ANP = AN \pm 1.5 \cdot (AN-FC36)
 - $ANP = AN \pm 1 \cdot (AN-FC48)$
 - ANP = AN \pm 0.5 \cdot (AN-FC60)

Stochastic Physics

- ECMWF scheme
- Perturbing Physics tendencies
- Perturbations from +0.5 to +1.5
- Keeping the same value of the perturbation coefficient for 1 hour and at squares of 10 x 10 degrees latxlon

Verification

NM)

P

- Verification exercise using synoptic observations
 - Calibration: with synoptic variables Z500, T500, Pmsl
 - Response to binary events: reliability and resolution of surface variables 10m surface wind and 6h accumulated precipitation
- Using GLAMEPS verification tool (Carlos Santos) on ecgate.

Brussels, 7-10 April 20

Hirlam - Aladin ASM

Precip. EPS - STP - SLF - STF AEMet

Reliab. - 6 h Acc. Precip H+24 (1,5,10,20) mm

Reliab. - 6 h Acc. Precip H+48 (1,5,10,20) mm

Undersampling

8

Precip. EPS – SLF – TEP - TEF

Reliab. - 6 h Acc. Precip H+24 (1,5,10,20) mm

Reliab. - 6 h Acc. Precip H+48 (1,5,10,20) mm

Undersampling

R NM) ROC curves - 6 h Acc Precip (1 & 5 mm) S P Agencia Estatal de Meteorología Various ensembles (EPS, STP, SLF, STF 11/11 avg members)

Ε

Brussels, 7-10 April 20

Hirlam - Aladin ASM

STE 0 72

0.8 0.9

Obs. EPS - STP - SLF - STF

Reliability - 10 m wind (10,15,20) m/s

Brussels, 7-10 April 20

MM)

P

S

Hirlam - Aladin ASM

Agencia Estatal de Meteorología

BERS - SLF - TEP - TEF

Reliability - 10 m wind (10,15,20) m/s

Brussels, 7-10 April 20

Hirlam - Aladin ASM

- Very crude implementation of SLAF and Stochastic Physics schemes.
- SLAF based in 48 hours forecast errors.
- Stochastic Physics scheme like ECMWF one and perturbing Physics tendencies, no individual scheme ones.
- Short parallel test of 15 days just to test the implementation.
- No clear statistical significance of results.
- 🍀 But ...
 - SLAF is giving encouraging results and it needs only a single global model forecast for IC's & BC's.
 - Stochastic Physics doesn't increase spread in the short range (more research needed).
 - Nice results of just downscaling ECMWF EPS and TEPS for BC's and IC's

- Improve the implementation of SLAF in GLAMEPS.
- More experiments on Stochastic Physics to increase spread.
- Longer parallel test to get more significant results from the verification.
- 20 members ensemble.

j.garciamoya@inm.es

Brussels, 7-10 April 20

Hirlam - Aladin ASM