
Status of optimisation work

on the NEC SX8R
at Météo-France

R. El Khatib

with the help of many :
Damien Lambert, NEC, Dominique Puech, Sami

Saarinen (ECMWF), Yann Seity, Eric Sevault, Filip Vana
(CHMI)

Aladin workshop / Hirlam all staff meeting
Bruxelles 07-10/04/2008

PlanPlan

 INTRODUCTIONINTRODUCTION
– Purposes of this workPurposes of this work
– Overview of a node SX8ROverview of a node SX8R
– Tools at disposal for optimisation
– -ftrace : example
– Methodology

 OPTIMISATION WORK
– Main features

• I/Os

• Vectorisation (« NPROMA »)

• Message passing

• Multitasking (Open-MP)

– Specific issues
• ODB & observations preprocessing (« Bator »)

• Screening

• Minimisations

• Arpege/Aladin - Arome

• Fullpos

 CONCLUSIONS & OUTLOOK

INTRODUCTION : Purposes of this workINTRODUCTION : Purposes of this work

 After porting :
time to have a look on the profiles with this new machine
(even if still vector ...)

 Make sure the code is optimised for higher truncations :
– especially for the now operational truncation T538
– And then for the next truncation increasement (T799 on SX9)

 Optimise AROME
– investigations needed

 New technologies at disposal for MF (on site) :
– Local vs global file system : how to get the best profit from them ?
– Open-MP : should we use it to improve the performances ?

INTRODUCTION : Overview of a node SX8RINTRODUCTION : Overview of a node SX8R

 Processors :
– 8 processors/node (VPP5000 : 1 processor/node)
– Vector processors with 256 vector registers

 Memory :
– 128 Gb/node (compared to VPP5000 : 4 or 8 Gb/node)
– 4096 memory banks (VPP5000 : 512)

 I/Os :
– Local disk : fast, but private to a node
– Global file system (GFS) : slower but visible by all nodes
– Expected transfer rate (GFS) : > 100 Mb/s

 CPU performance :
Peak performance : 35 Gflops/processor. In practice we can

expect ≈ 20% of the peak performance from a vector machine
=> 7 Gflops/processor

INTRODUCTION : INTRODUCTION :
Tools at disposal for optimisation

 Compiler option -ftrace providing detailed informations
per subroutines, such as :
– frequency of calls, real time, Mflpos, vector length, cache-

misses, banks conflicts ...
– Elapse time, communications time, messages length

 Environment variables providing :
– general informations per processors or for all processors, such

as timings, Mflpos, mean vector length, ...
– Detailed informations for each accessed file

 + Environment variables able to set miscellaneous
parameters, especially buffer sizes for reading files

INTRODUCTION : -ftrace : example (1)INTRODUCTION : -ftrace : example (1)

INTRODUCTION : -ftrace : example (2)INTRODUCTION : -ftrace : example (2)

INTRODUCTION : INTRODUCTION : Methodology

 Scalability comparisons for various software
configurations :
– Over 1, 2, 4, 8, 16 processors
– MPI vs. OPEN-MP whenever possible
– North-South vs. Square MPI distribution
– Local disk vs. Global file system whenever possible

 Profilings from the best performing configuration,
usually over 16 processors (ie : 2 full nodes)

 Tunings from the best performing configuration
(mainly : namelists)

Unfortunately : not a full node used for tests over 1, 2, 4 processors
... but jobs running during summer !

Main features : I/Os distribution

NSTRIN : number of processors for reading/decoding
NSTROUT : number of processors for encoding

 Local disks usage seems always better than global file system
 It is useless/detrimental to distribute encoding work on much processors
 It seems beneficial to distribute decoding work on much processors :

Influence of multi-nodes ??

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Real time I/Os on GFS (millisec.)

NSTRIN /GFS

NSTROUT /GFS

1 2 3 4 5 6 7 8

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Real time I/Os on local disk (millisec.)

NSTRIN /LOC

NSTROUT
/LOC

Influence of nodes on I/Os

 Better spread over
nodes

 But not too much :
2 nodes or 4/6
MPI tasks for I/Os

 => I/Os distribution
should be spread
over nodes, not over
MPI tasks

1 2 3 4 5 6 7 8

0

2000

4000

6000

8000

10000

12000

14000

Impact of the number of nodes on NSTRIN

8 tasks over 1 node
8 tasks over 2 nodes

8 tasks over 4 nodes
8 tasks over 8 nodes

NSTRIN for NPROC=8

Ti
m

e
(m

ill
is

ec
.)

 BEWARE OF CONCURRENT DISK ACCESSES !

I/Os : 2 examples of disk accesses issues

 Fullpos-Arpege (stretched):
For a single file to post-process :
short job but large matrixes files to read (≈ 133 Mb/s)
=> scalability mostly limited by the I/O part

 SURFEX (in the framework of AROME) :
An input file (≈ 320 Mb) was treated by each processor :

• 16 tasks => ≈ 480 s. (0.7 Kb/s) !
• 32 tasks => ≈ 600 s. (0.5 Kb/s) !!
• 64 tasks => ≈ 800 s. (0.4 Kb/s) !!!

=> Once read by a unique processor + MPI distribution (*) :
• 19 s. (17 Mb/s) + ≈ 40 s. communications = 60 s.

(*) unfortunately still to be debugged ...

I/Os : files formats

 Better read binary files than ASCII files :
 see the case of RTTOV coefficients file rtcoef_eos_2_airs.dat :

– ASCII version :
• ≈ 60 Mb read in more than 18 s. (3 Mb/s)
• Occurrence of 'BACKSPACE' breaking the use of a memory

buffer

– BINARY version :
• ≈ 30 Mb read in ≈ 2 s. (14 Mb/s.)
• Now acknowledged by ECMWF : faster on IBM as well.

 Is the « FA/LFI » file format (ie : Fortran indexed sequential
files) performant enough ?
– To be investigated. Apparently not so bad.
Actual transfer rate for a historical file : less than 120 Mb/s

Main features : vectorisation (NPROMA)

Forecast H24 T538 over 4 processors

 Best values : between 1500 and 3000
 Chaotic performances for such values or bigger values

=> further study

49 98 195 390 780 1560 3119 6238 12475

60

80

100

120

140

160

180

200

Vector length % NPROMA

49 98 195 390 780 1560 3119 6238 12475

6000

6500

7000

7500

8000

8500

9000

Memory cost % NPROMA

49 98 195 390 780 1560 3119 6238 12475

1200

1400

1600

1800

2000

2200

2400

2600

Real time % NPROMA

49 98 195 390 780 1560 3119 6238 12475

0

20

40

60

80

100

120

140

Instruction & operand cache misses % NPROMA

I. MISS
O. MISS

49 98 195 390 780 1560 3119 6238 12475

0

20

40

60

80

100

120

140

Banks conflicts % NPROMA

49 98 195 390 780 1560 3119 6238 12475

3000

3500

4000

4500

5000

5500

6000

6500

MFLOPS % NPROMA

NPROMA : vector length aspect

 « Kings » show that there
must exist optimal values

 Rmq : There are 256 vector
registers on a vector unit of a
SX8R processor

 => Best NPROMA should be
less than a multiple of 256

12
49

12
81

13
15

13
49

13
87

14
27

14
69

15
13

15
61

16
1

1
16

65
17

21
17

83
18

49
19

21
19

97
20

81
21

71
22

69
23

77
24

95
26

27
27

73
29

37
31

19
33

27
35

65
38

39

60

70

80

Relative vector length (%) and NPROMA

1265 1267 1269 1271 1273 1275 1277 1279 1281
170

175

180

185

190
Vector length % NPROMA (zoom)

255
511

767
1023

1279
1535

1791
2047

2303
2559

2815
307

1
3327

3583
383

9
4095

60

80

100

120

140

160

180

200

Vector length for NPROMA = k*256 -1

NPROMA : Banks conflicts aspect

 Inspired by an old recommandation by Fujitsu :
« a power of 2 minus 2 », test on the multiples of 256 minus 2 :

25
5

51
1

76
7

10
23

12
79

15
35

17
91

20
47

23
03

25
59

28
15

30
71

33
27

35
83

38
39

40
95

0

20

40

60

80

100

120

140

Banks conflicts (sec.) % "Multiple of 256 minus 1"

25
4

51
0

76
6

10
22

12
78

15
34

17
90

20
46

23
02

25
58

28
14

30
70

33
26

35
82

38
38

40
94

0

20

40

60

80

100

120

140

Banks conflicts (sec.) % "Multiple of 256 minus 2"

 => Looks slightly better ! Justification ??

NPROMA final recommendations & example

 Performance +/- 1% to 5 %

 Here the best values are
exactly : 2046 and 2814

 Prime numbers : not the best

 Best NPROMA bigger than
NGPTOT (1105) !?

25
4

51
0

76
6

10
22

11
05

12
78

12
79

15
34

17
90

20
46

23
02

25
58

28
14

35
83

250

255

260

265

270

275

280

285

290

295

Minimisation T107 (16 procs) : NPROMA contest

NPROMA

T
im

e
(s

ec
.)

 A multiple of 256 minus 2
 Between 2000 and 3000
 Advice :

– Either « NPROMA=-2046 » (REK after smoothing graphics)

– Or « NPROMA=-2814 » (ES after global 4DVar on SX8R « SUMO »)

 It can be worth (regularly re-)trying a set of values between 2000 and 3000 :

Main features : Message passing (1/3)

 For all models :
– Switch to LIMP_NOOLAP & LSLONDEM

(LIMP_NOOLAP was not supported on VPP5000)

– Communication buffer length tuned to a more « binary »
value (3276800 instead of 1800000)

 => saves ≈ 0.5%

450000 900000 1800000 3600000 7200000

240

242

244

246

248

250

252

254

256

258

260

Low res. minimisation :
NCOMBFLEN strange numbers

NCOMBFLEN

T
im

e
(s

ec
.)

409600 819200 1638400 3276800 6553600 13107200

240

242

244

246

248

250

252

254

256

258

260

Low res. minimisation :
NCOMBFLEN nice numbers

NCOMBFLEN

T
im

e
 (

s
e

c
.)

Message passing (2/3)

 For global model only :
– NORTH-SOUTH distribution always slightly faster than, or

equivalent to SQUARE distribution :
• tested on forecast with 4, 8, 16 & 32 processors.
• Tested on screening & minimisation with 4, 8 & 16 processors.

 For LAM only :
– SQUARE distribution is faster than NORTH-SOUTH distribution

(by ≈ 7 % according to a test with AROME) because coupling is
then balanced betwen Western and Eastern processsors

– For a better load balance, Y-axis distribution should consider :
• (C+I) if physics is more cpu-consumming than dynamics
• But (C+I+E) if dynamics (predictor-corrector) is more cpu-

consumming than physics
=> saves ≈ 6 % according to test with AROME

Message passing (3/3)

The GSTATS mystery :

 More MPI barriers makes AROME faster !?
 Explanation : ... not very clear. Is it because « sends » are

« non-blocking standard » and « receives » are « blocking
standard » ? Rmq : Barriers are already coded in
mpobseq/mpobseqad.

 => in cycle 33, two new namelists variables :
– LSYNC_TRANS : to synchronise MPI tasks in spectral

transforms before communications (MPL_ALLTOALLV)
– LSYNC_SLCOM : to synchronise MPI tasks before

semi-lagrangian communications

=> Saves ≈ 10 % cpu in AROME

Main features : Multitasking (Open-MP)

 Works on ARPEGE conf 001 and Fullpos,
but slightly less efficient than MPI

 Partly working on the minimisations :
– Problems of interpretation of the norm

OPEN-MP
– Remaining bugs in compiler ?

• Workarounds : a few OMP
directives modified or switched off

• Still not working when mixing MPI
and OMP if more than 2 MPI tasks

– SL adjoint : a synchronisation lock on
threads can do worse than a single
well-vectorising thread

=> still less efficient than pure MPI
distribution

1 2 4 8 16

0

200

400

600

800

1000

1200

1400

1600

1800

2000
T107 minimisation

MPI * 1 OMP
MPI * 2 OMP

MPI * 4 OMP

MPI * 8 OMP

Total number of processors

R
ea

l t
im

e
(s

ec
.)

1 2 4 8 16 32

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T538 forecast

1 thread

2 threads

4 threads

8 threads

Total number of processors

R
ea

l t
im

e
(s

ec
.)

Multitasking (Open-MP)

 Not yet working on Screening, even partly (crash)
 Not yet working on ALADIN (a problem probably

located inside spectral transforms)
 AROME not ready for Open-MP : needs SURFEX

and Meso-NH physics to support Open-MP

Open-MP : a disappointing technique on NEC ?

Specific issues : ODB & observations
preprocessing (« BATOR »)

ODB :
 Porting has been partly missed :

– An #ifdef VPP not translated => computation via a scalar
subroutine (in ifsaux/xrd). Now fixed.

– Vectorisation directives inside C codes not interpreted by the
compiler, unless on top of the subroutine => need to use Sami
Saarinen's wrapper for the sxcc compiler. Now active.

 Tuning of ODB environment variables under progress.
 Local disks synchronisation tool : to be re-written (failures occured)

BATOR :
 Profilings have been done early on top of the mis-porting of ODB

=> to be traced again
 However some optimisations have been realised (D. Puech)
 Further optimisations under progress to enable distribution

Screening

 Scalability looks good
 Better use local disks

=> needs inter-nodes synchronisations
when more than 8 processors

 Bug if 1 processor only ? (time
limit systematically exceeded)

 Performance was limited by
RRTM – better vectorized.

1 2 4 8 16

200

400

600

800

1000

1200

1400

Screening scalability
Real time /GFS NS

Real time /LOC NS
Real time /GFS
Square

Number of processors

R
e
a
l t

im
e
 (s

e
c.

)

TO DO :
 Re-examine profiles since RRTM optimisation and when

ODB environment variables are properly tuned

Minimisation – High resolution

 Performance limited by larcinbad
(500 Mflops ≈ 7% of what could be expected on a SX8R !)

 NEC reported poor performance because of « gather »
operations. Now optimised via compiler directives (≈ 1 Gflops)

 « Top 10 » in CPU for minimisation T224 (16 processors)

Minimisation – Low resolution

CPU :
– Max. number of gridpoint per processor can

become too small for optimal vectorisation

1 2 4 8 16

0

25

50

75

100

125

150

175

200

225
T107 minimisation : Vector length

Number of MPI tasks

1 2 4 8 16

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T107 minimisation scalability

Number of MPI tasks

T
im

e
(s

ec
.)

1 2 4 8 16

0

100

200

300

400

500

600

700

800

900

1000

1100

T48 minimisation scalability

Number of MPI tasks

R
ea

l t
im

e
(s

ec
.)

ELAPSE :
– However communications

are driving the performance.
Scalability remains
unchanged with an even
lower truncation (<=>
relatevely with more obs.)

ARPEGE/ALADIN - AROME

 ARPEGE/ALADIN :
– Performances were driven by RRTM

=> profiles to be re-examined since its optimisation
 AROME :

– Performance still driven by communications on
SX8R.

– (ref : AROME-France, NPROC=64 to run 24 hours
forecast in 30 min. elapse)

– Miscellaneous tiny improvement must be still
possible

– Could Open-MP reduce the load imbalance caused
by the E-zone ? (tests with ALADIN in CHMI would
not advocate for it ...)

AROME profile (1)

« Top 10 » CPU

AROME profile (2)

« Top 10 » ELAPSE

Performance* of AROME vs. ARPEGE

 AROME 32 processors over France** :
– NGPTOTG=307200 ; NFLEVG=41 ; => 2.85 GFlops/cpu

 AROME 4 processors over Austria :
– NGPTOTG=64800 ; NFLEVG=41 ; => 3.58 GFlops/cpu

 ARPEGE 32 processors T538 :
– NGPTOTG=399180 ; NFLEVG=60 ; => 5.36 GFlops/cpu

 ARPEGE 4 processors T538 :
– NGPTOTG=399180 ; NFLEVG=60 ; => 6.11 GFlops/cpu

* Before optimisation of RRTM and without MPI synchronisation in AROME.
** with predictor-corrector scheme. May not be used.

Fullpos

 Post-processing (on a single file) :
– Performance driven by large I/Os

(mostly matrixes because of
stretching)

=> poor scalability

1 2 4
0

20

40

60

80

100

120

140

160

180

200

Fullpos "927" scalability

Single node LOC –
MPI

Single node LOC –
OMP

Multinode GFS –
MPI

Single node GFS –
MPI

Number of processors

T
im

e
(s

ec
.)

1 2 4 8
0

5

10

15

20

25

30

35

40

45

50

Fullpos "BDAP" scalability

Single node LOC –
MPI
/NSTRIN=NSTROUT=
1Single node LOC –
MPI
/NSTRIN=NSTROUT=
2Single node LOC –
OMP

Number of processors

T
im

e
(s

ec
.)

 « 927 » (changing geometries) :
– Performance driven by the I/Os

(mostly the intermediate file ...)
=> poor scalability

– Better use local disk

Conclusions & Outlooks (1)

 Investigations on various configurations of ARPEGE and AROME
on NEC platform has lead to several positive results :
– Better understanding of I/Os performances, improvements, and some

ideas to go further
– Identification of the optimal NPROMA values
– Reduction of load inbalance and speed-up of communications in AROME
– Identification of misporting of ODB
– Optimisation of RRTM, done by NEC team at Météo-France

elapse time : Arpege T358l46/12processors = Arpege T538l60/16processors
(= cpu power x 2)

 Still problems remains :
– Limitations in the search for a higher performance in the minimisation
– Apparently poor performance of AROME, compared to ARPEGE

Conclusions & Outlooks (2)

 What to do now ?
– Priority #1 is now to optimise post-processing :

• Operations to switch to the in-line mode of Fullpos

– Finish the work on the miscellaneous identified weaknesses
– Get more benefits from ECMWF last benchmark (under progress)
– Update profiles with the last optimisations, and assess next priorities
– Survey of RTTOV-9 (expected to be even better vectorised, however)
– Keep the profiles up to date along the code releases on various platforms

 And also :
– Investigate more configurations (3DVar Aladin/Arome, 601, CANARI...)
– Be prepared for optimising on SX9 in early 2009
– Work on other identified problems :

• Fullpos « 927 » : remove the intermediate file thanks to the modularity of spectral
transforms

• Further optimisation of Surfex I/Os
• Support for Open-MP in AROME (at least for portability reasons)

