## **Consistent interfacing of surface** schemes

۲

#### 15th ALADIN Workshop, 6 - 10 / 05 /2005 Bratislava

#### **Piet Termonia**

Royal Meteorological Institute

Consistent interfacing of surface schemes - p.1/38

## Contents

•

• Best et al. compliancy

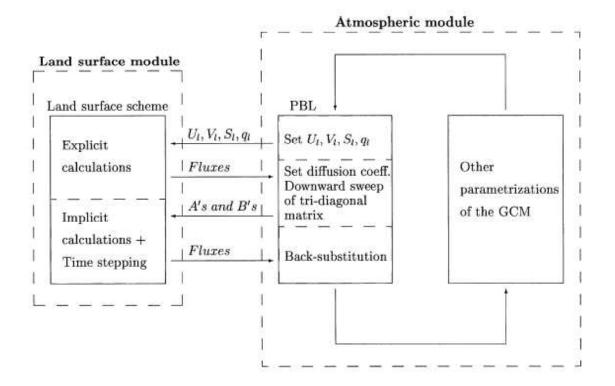
## Contents

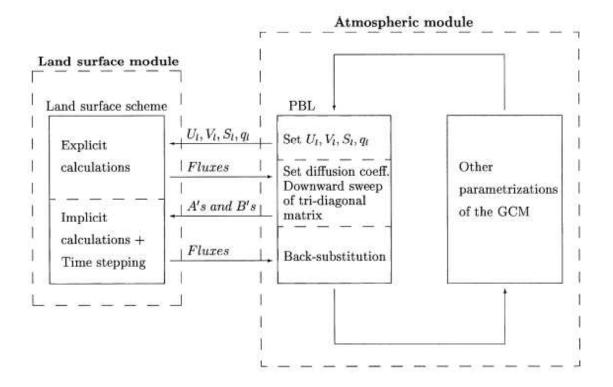
•

- Best et al. compliancy
- 5 questions and their analysis

## Contents

- Best et al. compliancy
- 5 questions and their analysis
- discussion


 Externalisation would allow "the attribution of differences in the model as a whole to differences in de land surface scheme". Different *worlds*: ALADIN-ALARO-AROME-ARPEGE, ECMWF (via IFS), HIRLAM, meso-NH, SURFEX


- Externalisation would allow "the attribution of differences in the model as a whole to differences in de land surface scheme". Different *worlds*: ALADIN-ALARO-AROME-ARPEGE, ECMWF (via IFS), HIRLAM, meso-NH, SURFEX
- interface should be defined on the lowest model level

- Externalisation would allow "the attribution of differences in the model as a whole to differences in de land surface scheme". Different *worlds*: ALADIN-ALARO-AROME-ARPEGE, ECMWF (via IFS), HIRLAM, meso-NH, SURFEX
- interface should be defined on the lowest model level
- with Neumann-type boundary conditions: fluxes

- Externalisation would allow "the attribution of differences in the model as a whole to differences in de land surface scheme". Different *worlds*: ALADIN-ALARO-AROME-ARPEGE, ECMWF (via IFS), HIRLAM, meso-NH, SURFEX
- interface should be defined on the lowest model level
- with Neumann-type boundary conditions: fluxes
- "To maintain generality, both implicit and explicit coupling should be an option"

- Externalisation would allow "the attribution of differences in the model as a whole to differences in de land surface scheme". Different *worlds*: ALADIN-ALARO-AROME-ARPEGE, ECMWF (via IFS), HIRLAM, meso-NH, SURFEX
- interface should be defined on the lowest model level
- with Neumann-type boundary conditions: fluxes
- "To maintain generality, both implicit and explicit coupling should be an option"
- Be my guest or be a good guest?





#### + Enquiry mode

•

TABLE 1. Variables to be passed within the coupling scheme. This table does not include the domain-describing variables such as geographical coordinates, time, or height of atmospheric levels. The surface scheme should respond with output dependent on a mode flag (enquiry mode, explicit mode, or time-stepping mode). The output variables are all tile averaged.

| Input variables (from atmospheric model)                           | Output variables (from surface scheme)              |
|--------------------------------------------------------------------|-----------------------------------------------------|
| Lowest-level east-west wind speed (m s <sup>-1</sup> )             | Enquiry mode                                        |
| Lowest-level north–south wind speed (m s <sup>-1</sup> )           | Surface albedo ()                                   |
| Lowest-level dry static energy (Ĵ kg-1)                            | Surface emissivity ()                               |
| Lowest-level specific humidity (kg kg <sup>-1</sup> )              | Surface radiative temperature (K)                   |
| Surface pressure (Pa)                                              | Explict mode                                        |
| Solar zenith angle (°)                                             | East-west momentum flux (N m <sup>-2</sup> )        |
| Net surface shortwave flux (W m <sup>-2</sup> )                    | North-south momentum flux (N m <sup>-2</sup> )      |
| Fraction of diffuse shortwave radiation ()                         | Sensible heat flux (W m <sup>-2</sup> )             |
| Downwelling longwave radiation (W m <sup>-2</sup> )                | Latent heat flux (W m <sup>-2</sup> )               |
| Rainfall (kg m <sup>-2</sup> s <sup>-1</sup> )                     | Moisture flux (kg $m^{-2} s^{-1}$ )                 |
| Snowfall (kg m <sup>-2</sup> s <sup>-1</sup> )                     | Time-stepping mode                                  |
| Subgrid variance of rainfall (kg m <sup>-2</sup> s <sup>-1</sup> ) | East-west momentum flux (N m <sup>-2</sup> )        |
| Subgrid variance of snowfall (kg m <sup>-2</sup> s <sup>-1</sup> ) | North-south momentum flux (N m <sup>-2</sup> )      |
| $A_{a}, B_{a}$ (dry static energy)                                 | Sensible heat flux (W m <sup>-2</sup> )             |
| $A_q$ , $B_q$ (specific humidity)                                  | Latent heat flux (W m <sup>-2</sup> )               |
| $A_{U}^{2}, B_{U}^{2}$ (east-west wind component)                  | Moisture flux (kg m <sup>-2</sup> s <sup>-1</sup> ) |
| $A_{\nu}, B_{\nu}$ (north-south wind component)                    | Surface radiative temperature (K)                   |

## Fluxes (Best et al.)

•

$$J^{U} = \rho C_{M} |\mathbf{V}| U_{L}$$
  

$$J^{V} = \rho C_{M} |\mathbf{V}| V_{L}$$
  

$$J^{S} = \rho C_{H} |\mathbf{V}| (S_{L} - S_{s})$$
  

$$J^{q} = \rho C_{H} |\mathbf{V}| (q_{L} - q_{s})$$

## **Fluxes: explicit computation**

explicit from of the fluxes

•

$$J^{U} = \rho C_{M} |\mathbf{V}| U_{l}^{-}$$
  

$$J^{V} = \rho C_{M} |\mathbf{V}| V_{l}^{-}$$
  

$$J^{S} = \rho C_{H} |\mathbf{V}| (S_{l}^{-} - S_{s}^{-})$$
  

$$J^{q} = \rho C_{H} |\mathbf{V}| (q_{l}^{-} - q_{s}^{-})$$

## Fluxes: explicit computation

explicit from of the fluxes

$$J^{U} = \rho C_{M} |\mathbf{V}| U_{l}^{-}$$

$$J^{V} = \rho C_{M} |\mathbf{V}| V_{l}^{-}$$

$$J^{S} = \rho C_{H} |\mathbf{V}| (S_{l}^{-} - S_{s}^{-})$$

$$J^{q} = \rho C_{H} |\mathbf{V}| (q_{l}^{-} - q_{s}^{-})$$

 So if the atmospheric module passes
 U<sub>l</sub>, V<sub>l</sub>, S<sub>l</sub>, q<sub>l</sub> to the land surface module, the job
 is done (well at least from a conceptual point
 of view :-)

## Fluxes: implicit computation

۲

 implicit from of the fluxes (following Kalnay and Kanamistu 1988):

$$J^{U} = \rho C_{M} |\mathbf{V}| U_{l}^{+}$$
  

$$J^{V} = \rho C_{M} |\mathbf{V}| V_{l}^{+}$$
  

$$J^{S} = \rho C_{H} |\mathbf{V}| (S_{l}^{+} - S_{s}^{+})$$
  

$$J^{q} = \rho C_{H} |\mathbf{V}| (q_{l}^{+} - q_{s}^{+})$$

## Fluxes: implicit computation

۲

 implicit from of the fluxes (following Kalnay and Kanamistu 1988):

$$J^{U} = \rho C_{M} |\mathbf{V}| U_{l}^{+}$$
  

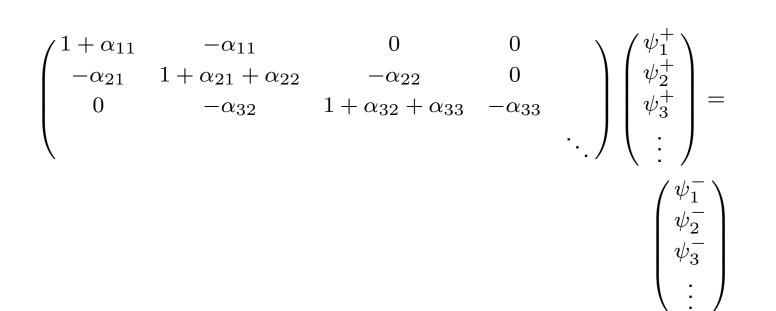
$$J^{V} = \rho C_{M} |\mathbf{V}| V_{l}^{+}$$
  

$$J^{S} = \rho C_{H} |\mathbf{V}| (S_{l}^{+} - S_{s}^{+})$$
  

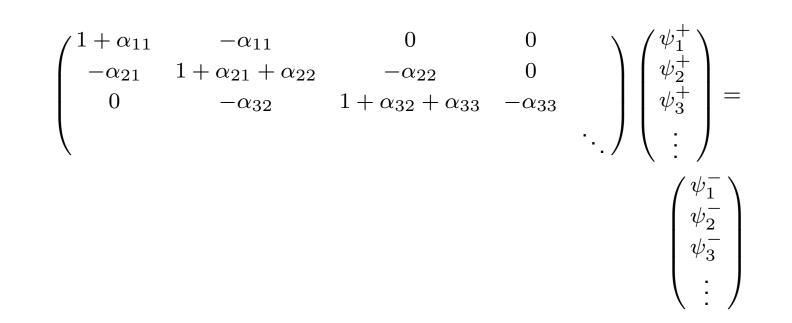
$$J^{q} = \rho C_{H} |\mathbf{V}| (q_{l}^{+} - q_{s}^{+})$$

• So we need  $U_l^+, V_l^+, S_l^+, q_l^+$ ?, but ...

## **Vertical diffusion**


•

#### vertical diffusion:


$$\psi_{i}^{+} - \psi_{i}^{-} = -g \frac{\Delta t}{\delta p_{i}} \left[ K_{i}' \left( \psi_{i}^{+} - \psi_{i+1}^{+} \right) - K_{i-1}' \left( \psi_{i-1}^{+} - \psi_{i}^{+} \right) \right] \\ = -\alpha_{i,i} \left( \psi_{i}^{+} - \psi_{i+1}^{+} \right) + \alpha_{i,i-1} \left( \psi_{i-1}^{+} - \psi_{i}^{+} \right) \\ \psi_{l}^{+} - \psi_{l}^{-} = -g \frac{\Delta t}{\delta p_{l}} \left[ C_{Ml}' \left( \psi_{l}^{+} - \psi_{s}^{+} \right) - K_{l-1}' \left( \psi_{l-1}^{+} - \psi_{l}^{+} \right) \right] \\ = -\alpha_{l,l} \left( \psi_{l}^{+} - \psi_{s}^{+} \right) + \alpha_{l,l-1} \left( \psi_{l-1}^{+} - \psi_{l}^{+} \right)$$

• with the fluxes

$$J_{l}^{\psi} \equiv C'_{Ml} \left( \psi_{l}^{+} - \psi_{s}^{+} \right) \quad J_{i}^{\psi} \equiv K'_{i} \left( \psi_{i}^{+} - \psi_{i+1}^{+} \right)$$



۲



• convert to lower diagonal matrix which allows an upward sweep:  $\psi_i^+ = a_i \psi_{i+1}^+ + b_i$ .

۲

| ACDIFUS ( $\psi_s = 0$ ) |                                      |                  |  |  |
|--------------------------|--------------------------------------|------------------|--|--|
|                          | $a_i = a_i(a_{i-1}; K'_i, K'_{i-1})$ |                  |  |  |
|                          | $b_i = b_i(b_{i-1}; K'_i, K'_{i-1})$ |                  |  |  |
| atmospheric              |                                      | downward sweep   |  |  |
|                          | $a_l = a_l(a_{l-1}; K'_l, K'_{l-1})$ |                  |  |  |
|                          | $b_l = b_l(b_{l-1}; K'_l, K'_{l-1})$ |                  |  |  |
|                          | $\psi_l^+ = b_l$                     |                  |  |  |
| atmospheric              |                                      | back subsitution |  |  |
|                          | $\psi_i^+ = a_i  \psi_{i+1}^+ + b_i$ |                  |  |  |

۲

| interface   | <b>@</b> $i = l$ ( $\psi_s = 0$ )          | )                |
|-------------|--------------------------------------------|------------------|
|             | $a_i = a_i(a_{i-1}; K'_i, K'_{i-1})$       |                  |
|             | $b_i = b_i(b_{i-1}; K'_i, K'_{i-1})$       |                  |
| atmospheric | ÷                                          | downward sweep   |
|             | $a_l = a_l(a_{l-1}; K'_l, K'_{l-1})$       |                  |
| interface   | $b_{l} = b_{l}(b_{l-1}; K'_{l}, K'_{l-1})$ |                  |
|             | $\psi_l^+ = b_l$                           |                  |
| atmospheric | ÷                                          | back subsitution |
|             | $\psi_i^+ = a_i \psi_{i+1}^+ + b_i$        |                  |

# So what are $A_l, B_l$ ?

۲

lowest level vertical diffusion tendency:

$$\psi_{l}^{+} - \psi_{l}^{-} = -g \frac{\Delta t}{\delta p_{l}} \left[ C'_{Ml} \left( \psi_{l}^{+} - \psi_{s}^{+} \right) - K'_{l-1} \left( \psi_{l-1}^{+} - \psi_{l}^{+} \right) \right]$$

but we don't know  $\psi_s$  as yet?

## So what are $A_l, B_l$ ?

۲

lowest level vertical diffusion tendency:

$$\psi_{l}^{+} - \psi_{l}^{-} = -g \frac{\Delta t}{\delta p_{l}} \left[ C'_{Ml} \left( \psi_{l}^{+} - \psi_{s}^{+} \right) - K'_{l-1} \left( \psi_{l-1}^{+} - \psi_{l}^{+} \right) \right]$$

but we don't know  $\psi_s$  as yet?

• rewrite in terms of  $J_l^{\psi}$ :

$$\psi_{l}^{+} - \psi_{l}^{-} = -g \frac{\Delta t}{\delta p_{l}} \left[ J_{l}^{\psi} - K_{l-1}' \left( \psi_{l-1}^{+} - \psi_{l}^{+} \right) \right]$$

# So what are $A_l, B_l$ ?

۲

lowest level vertical diffusion tendency:

$$\psi_{l}^{+} - \psi_{l}^{-} = -g \frac{\Delta t}{\delta p_{l}} \left[ C'_{Ml} \left( \psi_{l}^{+} - \psi_{s}^{+} \right) - K'_{l-1} \left( \psi_{l-1}^{+} - \psi_{l}^{+} \right) \right]$$

but we don't know  $\psi_s$  as yet?

• rewrite in terms of  $J_l^{\psi}$ :

$$\psi_{l}^{+} - \psi_{l}^{-} = -g \frac{\Delta t}{\delta p_{l}} \left[ J_{l}^{\psi} - K_{l-1}' \left( \psi_{l-1}^{+} - \psi_{l}^{+} \right) \right]$$

• so hide in  $J_l^{\psi}$ :  $\psi_l^+ = A_{\psi}J_l^{\psi} + B_{\psi}$ 

#### Neumann conditions

$$a_{i} = a_{i}(a_{i-1}; K'_{i}, K'_{i-1})$$
  
$$b_{i} = b_{i}(b_{i-1}; K'_{i}, K'_{i-1})$$

•

atmospheric

۲

downward sweep

|                                             | $a_l \rightarrow A_l; b_l \rightarrow B_l; impl = T(INTENT \ OUT)$ |                  |
|---------------------------------------------|--------------------------------------------------------------------|------------------|
| interface                                   | $A_l, B_l, flag(impl = T)$ (INTENT IN)                             |                  |
| surface                                     | use $A_l, B_l \Rightarrow J^{\psi}(INTENT OUT)$                    |                  |
| interface                                   | $J_l^{\psi}(INTENT IN, OUT)$                                       |                  |
| $\psi_l^+ = A_{\psi} J_l^{\psi} + B_{\psi}$ |                                                                    |                  |
| atmospheric                                 | ÷                                                                  | back subsitution |
|                                             | $\psi_i^+ = a_i  \psi_{i+1}^+ + b_i$                               |                  |

• linearization:

•

$$J^{S} = C_{H1} S_{l}^{+} + C_{H2} q_{l}^{+} + C_{H3} T_{s}^{+} + C_{H4}$$
$$J^{q} = C_{E1} S_{l}^{+} + C_{E2} q_{l}^{+} + C_{E3} T_{s}^{+} + C_{E4}$$

• linearization:

$$J^{S} = C_{H1} S_{l}^{+} + C_{H2} q_{l}^{+} + C_{H3} T_{s}^{+} + C_{H4}$$
$$J^{q} = C_{E1} S_{l}^{+} + C_{E2} q_{l}^{+} + C_{E3} T_{s}^{+} + C_{E4}$$

$$\frac{\partial T_s}{\partial t} = \frac{2\pi}{\tau} \left( T_p - T_s^+ \right) + C_s \left\{ \left( F_{\dagger}' - \epsilon \sigma T_s^{+4} \right) + F_{\odot}(1 - \alpha) + \mathsf{FLE} + \mathsf{FCS} \right\}$$

• linearization:

$$J^{S} = C_{H1} S_{l}^{+} + C_{H2} q_{l}^{+} + C_{H3} T_{s}^{+} + C_{H4}$$
$$J^{q} = C_{E1} S_{l}^{+} + C_{E2} q_{l}^{+} + C_{E3} T_{s}^{+} + C_{E4}$$

#### linearization:

$$T_s^+ = D_{T1} S_l^+ + D_{T2} q_l^+ + D_{T4}$$

• linearization:

۲

$$J^{S} = C_{H1} S_{l}^{+} + C_{H2} q_{l}^{+} + C_{H3} T_{s}^{+} + C_{H4}$$
$$J^{q} = C_{E1} S_{l}^{+} + C_{E2} q_{l}^{+} + C_{E3} T_{s}^{+} + C_{E4}$$

#### linearization:

$$T_s^+ = D_{T1} S_l^+ + D_{T2} q_l^+ + D_{T4}$$

#### subsitution

$$J^{S} = C_{H1} S_{l}^{+} + C_{H2} q_{l}^{+} + C_{H3} \left( D_{T1} S_{l}^{+} + D_{T2} q_{l}^{+} + D_{T4} \right) + C_{H4}$$
$$J^{q} = C_{E1} S_{l}^{+} + C_{E2} q_{l}^{+} + C_{E3} \left( D_{T1} S_{l}^{+} + D_{T2} q_{l}^{+} + D_{T4} \right) + C_{E4}$$

#### subsitution

•

$$J^{S} = C_{H1} S_{l}^{+} + C_{H2} q_{l}^{+} + C_{H3} \left( D_{T1} S_{l}^{+} + D_{T2} q_{l}^{+} + D_{T4} \right) + C_{H4}$$
$$J^{q} = C_{E1} S_{l}^{+} + C_{E2} q_{l}^{+} + C_{E3} \left( D_{T1} S_{l}^{+} + D_{T2} q_{l}^{+} + D_{T4} \right) + C_{E4}$$

#### subsitution

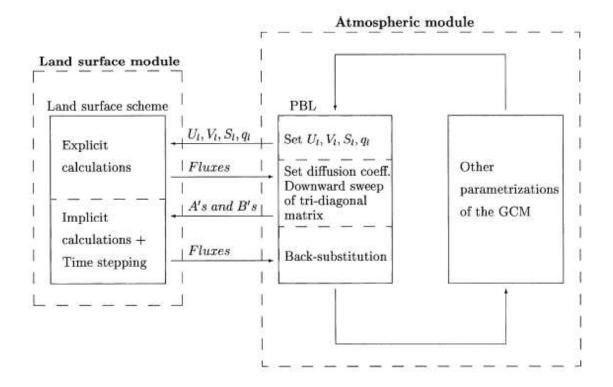
۲

$$J^{S} = C_{H1} S_{l}^{+} + C_{H2} q_{l}^{+} + C_{H3} \left( D_{T1} S_{l}^{+} + D_{T2} q_{l}^{+} + D_{T4} \right) + C_{H4}$$
  
$$J^{q} = C_{E1} S_{l}^{+} + C_{E2} q_{l}^{+} + C_{E3} \left( D_{T1} S_{l}^{+} + D_{T2} q_{l}^{+} + D_{T4} \right) + C_{E4}$$

• use  $A_l, B_l$  to substitute  $S_l^+, q_l^+$ :

$$S_l^+ = A_S J^S + B_S$$
$$q_l^+ = A_q J^q + B_q$$

#### subsitution


۲

$$J^{S} = C_{H1} S_{l}^{+} + C_{H2} q_{l}^{+} + C_{H3} \left( D_{T1} S_{l}^{+} + D_{T2} q_{l}^{+} + D_{T4} \right) + C_{H4}$$
$$J^{q} = C_{E1} S_{l}^{+} + C_{E2} q_{l}^{+} + C_{E3} \left( D_{T1} S_{l}^{+} + D_{T2} q_{l}^{+} + D_{T4} \right) + C_{E4}$$

• use  $A_l, B_l$  to substitute  $S_l^+, q_l^+$ :

$$S_l^+ = A_S J^S + B_S$$
$$q_l^+ = A_q J^q + B_q$$

•  $\Rightarrow$  2 linear Eqs. with 2 unknowns  $J^S, J^q$ (INTENT OUT)



#### + Enquiry mode

•

TABLE 1. Variables to be passed within the coupling scheme. This table does not include the domain-describing variables such as geographical coordinates, time, or height of atmospheric levels. The surface scheme should respond with output dependent on a mode flag (enquiry mode, explicit mode, or time-stepping mode). The output variables are all tile averaged.

| Input variables (from atmospheric model)                           | Output variables (from surface scheme)              |
|--------------------------------------------------------------------|-----------------------------------------------------|
| Lowest-level east-west wind speed (m s <sup>-1</sup> )             | Enquiry mode                                        |
| Lowest-level north-south wind speed (m s <sup>-1</sup> )           | Surface albedo ()                                   |
| Lowest-level dry static energy (J kg <sup>-1</sup> )               | Surface emissivity (—)                              |
| Lowest-level specific humidity (kg kg-1)                           | Surface radiative temperature (K)                   |
| Surface pressure (Pa)                                              | Explict mode                                        |
| Solar zenith angle (°)                                             | Éast−west momentum flux (N m <sup>-2</sup> )        |
| Net surface shortwave flux (W m <sup>-2</sup> )                    | North–south momentum flux (N m <sup>-2</sup> )      |
| Fraction of diffuse shortwave radiation ()                         | Sensible heat flux (W m <sup>-2</sup> )             |
| Downwelling longwave radiation (W m <sup>-2</sup> )                | Latent heat flux (W m <sup>-2</sup> )               |
| Rainfall (kg m-2 s-1)                                              | Moisture flux (kg m <sup>-2</sup> s <sup>-1</sup> ) |
| Snowfall (kg m <sup>-2</sup> s <sup>-1</sup> )                     | Time-stepping mode                                  |
| Subgrid variance of rainfall (kg m <sup>-2</sup> s <sup>-1</sup> ) | East-west momentum flux (N m <sup>-2</sup> )        |
| Subgrid variance of snowfall (kg m <sup>-2</sup> s <sup>-1</sup> ) | North–south momentum flux (N m <sup>-2</sup> )      |
| $A_s, B_s$ (dry static energy)                                     | Sensible heat flux (W m <sup>-2</sup> )             |
| $A_{q}, B_{q}$ (specific humidity)                                 | Latent heat flux (W m <sup>-2</sup> )               |
| $A_{U}^{\prime}, B_{U}^{\prime}$ (east-west wind component)        | Moisture flux (kg m <sup>-2</sup> s <sup>-1</sup> ) |
| $A_{\nu}, B_{\nu}$ (north-south wind component)                    | Surface radiative temperature (K)                   |

## 5 questions

. 

• S vs.  $c_p \theta$ 

۲

•

- S vs.  $c_p \theta$
- neglecting  $Tq_N$

•

- S vs.  $c_p \theta$
- neglecting  $Tq_N$
- antifi brillation

•

- S vs.  $c_p \theta$
- neglecting  $Tq_N$
- antifi brillation

• 
$$A_U = A_V$$

•

- S vs.  $c_p \, heta$
- neglecting  $Tq_N$
- antifi brillation
- $A_U = A_V$
- $c_p(q)$  and L(T)



۲

 ALADIN-ARPEGE (Giordani 1993), ECMWF (Best et al.): dry static energy

$$S = c_p T + \phi$$



 ALADIN-ARPEGE (Giordani 1993), ECMWF (Best et al.): dry static energy

 $S = c_p T + \phi$ 

 ARPEGE-Climate (Gibelin 2004), SURFEX: sensible heat

$$c_{ps}\theta_s = c_{ps} T_s \pi_s^+, \qquad \pi_s^+ = \left(\frac{p_{00}}{p_s}\right)^{\frac{R}{c_{ps}}}$$



 ALADIN-ARPEGE (Giordani 1993), ECMWF (Best et al.): dry static energy

 $S = c_p T + \phi$ 

 ARPEGE-Climate (Gibelin 2004), SURFEX: sensible heat

$$c_{ps}\theta_s = c_{ps} T_s \pi_s^+, \qquad \pi_s^+ = \left(\frac{p_{00}}{p_s}\right)^{\frac{R}{c_{ps}}}$$

• transformation:  $c_{ps}\theta_s = (S_s - \phi_s) \pi_s$ 

# S vs. $c_p \theta$ : be my guest?

۲

• What if we would like to plug a  $c_p \theta$  module into a *S* module or vice versa?

# S vs. $c_p \theta$ : be my guest?

- What if we would like to plug a  $c_p \theta$  module into a *S* module or vice versa?
- Keeping logical switches in both modules is not an option: (redundant) code maintenance will increase.

# S vs. $c_p \theta$ : be my guest?

- What if we would like to plug a  $c_p \theta$  module into a *S* module or vice versa?
- Keeping logical switches in both modules is not an option: (redundant) code maintenance will increase.
- Can it be done in the interface?

• Go from  $J^S$  to  $J^{\theta}$ 

•

$$J_{l}^{S} = \rho C_{H} |\mathbf{V}| \left( S_{l}^{+} - S_{s}^{+} \right)$$
  

$$J_{l}^{\theta} = \rho C_{H} |\mathbf{V}| \left( c_{pl}^{+} \theta_{l}^{+} - c_{ps}^{+} \theta_{s}^{+} \right)$$
  

$$J_{l}^{\theta} = \pi_{s}^{+} J_{l}^{S} + \rho C_{H} |\mathbf{V}| \left\{ S_{l}^{+} \left( \pi_{l}^{+} - \pi_{s}^{+} \right) + \phi_{s}^{+} \pi_{s}^{+} - \phi_{l}^{+} \pi_{l}^{+} \right\}$$

• Go from  $J^S$  to  $J^{\theta}$ 

۲

$$J_{l}^{S} = \rho C_{H} |\mathbf{V}| \left( S_{l}^{+} - S_{s}^{+} \right)$$
  

$$J_{l}^{\theta} = \rho C_{H} |\mathbf{V}| \left( c_{pl}^{+} \theta_{l}^{+} - c_{ps}^{+} \theta_{s}^{+} \right)$$
  

$$J_{l}^{\theta} = \pi_{s}^{+} J_{l}^{S} + \rho C_{H} |\mathbf{V}| \left\{ S_{l}^{+} \left( \pi_{l}^{+} - \pi_{s}^{+} \right) + \phi_{s}^{+} \pi_{s}^{+} - \phi_{l}^{+} \pi_{l}^{+} \right\}$$

• Go from  $A_S, B_S$  to  $A_{\theta}, B_{\theta}$ 

$$S_l^+ = A_S J_l^S + B_S$$
$$c_p \theta_l^+ = A_\theta J_l^\theta + B_\theta$$

we get an invertible linear transformation

•

$$\begin{pmatrix} A_S \\ B_S \end{pmatrix} = \frac{1}{\pi_l^+ + \rho C_H |\mathbf{V}| \left(\pi_s^+ - \pi_l^+\right)} \begin{pmatrix} \pi_s^+ & 0 \\ \rho C_H |\mathbf{V}| \left(\phi_s^+ \pi_s^+ - \phi_l^+ \pi_l^+\right) & 1 \end{pmatrix} \begin{pmatrix} A_\theta \\ B_\theta \end{pmatrix} + \begin{pmatrix} 0 \\ \phi_l^+ \pi_l^+ \end{pmatrix}$$

we get an invertible linear transformation

$$\begin{pmatrix} A_S \\ B_S \end{pmatrix} = \frac{1}{\pi_l^+ + \rho C_H |\mathbf{V}| \left(\pi_s^+ - \pi_l^+\right)} \begin{pmatrix} \pi_s^+ & 0 \\ \rho C_H |\mathbf{V}| \left(\phi_s^+ \pi_s^+ - \phi_l^+ \pi_l^+\right) & 1 \end{pmatrix} \begin{pmatrix} A_\theta \\ B_\theta \end{pmatrix} + \begin{pmatrix} 0 \\ \phi_l^+ \pi_l^+ \end{pmatrix}$$

• what about  $c_p^+$  in  $\pi^+$ ?

we get an invertible linear transformation

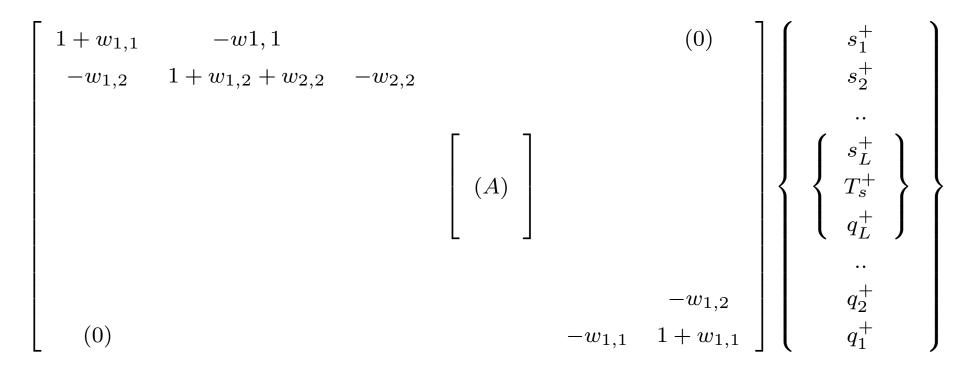
$$\begin{pmatrix} A_S \\ B_S \end{pmatrix} = \frac{1}{\pi_l^+ + \rho C_H |\mathbf{V}| \left(\pi_s^+ - \pi_l^+\right)} \begin{pmatrix} \pi_s^+ & 0 \\ \rho C_H |\mathbf{V}| \left(\phi_s^+ \pi_s^+ - \phi_l^+ \pi_l^+\right) & 1 \end{pmatrix} \begin{pmatrix} A_\theta \\ B_\theta \end{pmatrix} + \begin{pmatrix} 0 \\ \phi_l^+ \pi_l^+ \end{pmatrix}$$

• what about  $c_p^+$  in  $\pi^+$ ?

• make the same compromise as in ARPEGE Climate, Gibelin (2004): take it at -. in that case it was necessary to transform  $T_s$  (which we need for  $\frac{\partial T_s}{\partial t} = ...$ ) to  $\theta$ .

# So ... be my guest

• after the call to the surface scheme, the interface can transform the fluxes because it still "remembers" the *A* and *B* coeffi cients!


# So ... be my guest

- after the call to the surface scheme, the interface can transform the fluxes because it still "remembers" the A and B coeffi cients!
- so neither the atmospheric module nor the surface module have to know about the choice of the "other world" and still say: "be my guest"

# So ... be my guest

- after the call to the surface scheme, the interface can transform the fluxes because it still "remembers" the *A* and *B* coeffi cients!
- so neither the atmospheric module nor the surface module have to know about the choice of the "other world" and still say: "be my guest"
- if this is feasible: the development on SURFEX can completely ignore the matter and be still completely "Best compliant"

#### Documentation of L. Gerard (2001)



"Parametrisations physique ARPEGE-ALADIN", p16-6: In contradiction to the principle of linearization we only consider the first term  $HQq_N$ in the – index

• The "surface" part

۲

$$\begin{bmatrix} 1 + w_{L-1,L} + w_{L,L} & -w_{L,L}\mathsf{CTVS} & 0^* \\ -\mathsf{CSVT} & 1 + \mathsf{CTVT} & -\mathsf{CQVT} \\ 0 & -w_{L,L}\mathsf{CTVQ} & 1 + w_{L-1,L} + w_{L,L}\mathsf{CQVQ} \end{bmatrix} \begin{cases} s_L^+ \\ T_s^+ \\ q_L^+ \end{cases}$$

Ignoring the part proportional to

$$q_l^+ T_s^+ \sim 0^*$$

#### to obtain a tridiagonal matrix.

• The "surface" part

$$\begin{bmatrix} 1 + w_{L-1,L} + w_{L,L} & -w_{L,L}\mathsf{CTVS} & 0^* \\ -\mathsf{CSVT} & 1 + \mathsf{CTVT} & -\mathsf{CQVT} \\ 0 & -w_{L,L}\mathsf{CTVQ} & 1 + w_{L-1,L} + w_{L,L}\mathsf{CQVQ} \end{bmatrix} \begin{bmatrix} s_L^+ \\ T_s^+ \\ q_L^+ \end{bmatrix}$$

Ignoring the part proportional to

$$q_l^+ T_s^+ \sim 0^*$$

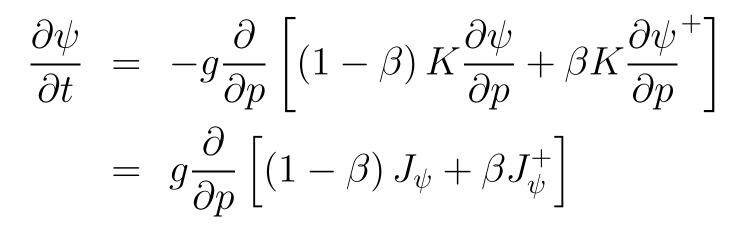
to obtain a tridiagonal matrix.

Following Best et al., this is NOT necessary!

•

• problem: PCDROV surface exchange coeffficient

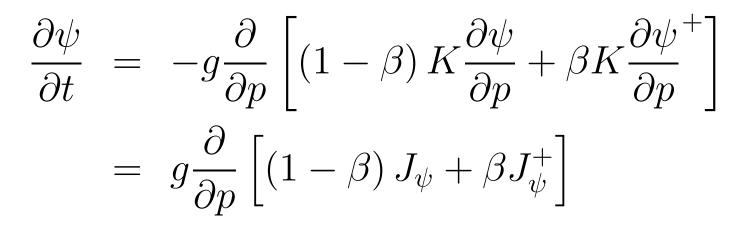
- problem: PCDROV surface exchange coefficient
- In ALADIN-ARPEGE one computes with modified exchange coefficients PCDROV \* PXDROV


- problem: PCDROV surface exchange coeffficient
- In ALADIN-ARPEGE one computes with modified exchange coefficients PCDROV \* PXDROV
- If we follow this approach, then we compute the fluxes with modified exchange coefficients.

- problem: PCDROV surface exchange coeffficient
- In ALADIN-ARPEGE one computes with modified exchange coefficients PCDROV \* PXDROV
- If we follow this approach, then we compute the fluxes with modified exchange coefficients.
- In an externalisation as Best et al., the fluxes are computed by the surface scheme, but PXDROV depends on the layers above, i.e. atmospheric module.

### Antifibrillation: however ...

•


Bénard et al. (2000): let the explicitness



### Antifibrillation: however ...

•

Bénard et al. (2000): let the explicitness



So we can also multiply the fluxes.

### Antifibrillation: however ...

• Bénard et al. (2000): let the explicitness

$$\frac{\partial \psi}{\partial t} = -g \frac{\partial}{\partial p} \left[ (1-\beta) K \frac{\partial \psi}{\partial p} + \beta K \frac{\partial \psi^+}{\partial p} \right]$$
$$= g \frac{\partial}{\partial p} \left[ (1-\beta) J_{\psi} + \beta J_{\psi}^+ \right]$$

- So we can also multiply the fluxes.
- If we can compute β entirely in the atmospheric module we can then multipy the received fluxes.

## Antifibrillation: computation $\beta$

۲

• Bénard et al. (2000): situation dependent  $\beta$ 

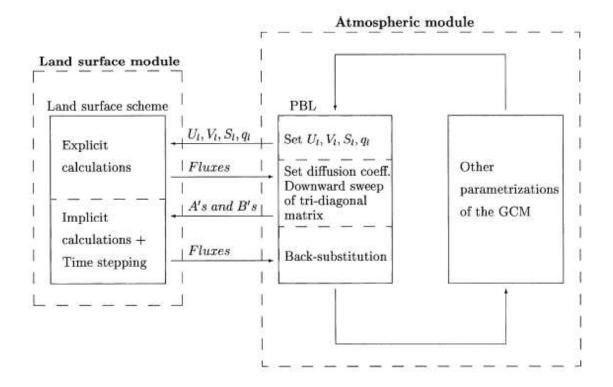
 $A(\beta, K, \alpha)\tau^{2} + B(\beta, K, \alpha)\tau + C(\beta, K, \alpha) = 0$ 

## Antifibrillation: computation $\beta$

• Bénard et al. (2000): situation dependent  $\beta$ 

 $A(\beta, K, \alpha)\tau^{2} + B(\beta, K, \alpha)\tau + C(\beta, K, \alpha) = 0$ 

 so compute β in the atmospheric module and use the enquiry mode whenever we need some info of the surface.


## Antifibrillation: computation $\beta$

• Bénard et al. (2000): situation dependent  $\beta$ 

 $A(\beta, K, \alpha)\tau^{2} + B(\beta, K, \alpha)\tau + C(\beta, K, \alpha) = 0$ 

- so compute β in the atmospheric module and use the enquiry mode whenever we need some info of the surface.
- ADVANTAGE: the surface does not have to care about antifi brillation. It only has to answer to the enquiries.

### Best, Beljaars, Polcher, Viterbo, 2004



#### + Enquiry mode

### Best, Beljaars, Polcher, Viterbo, 2004

•

TABLE 1. Variables to be passed within the coupling scheme. This table does not include the domain-describing variables such as geographical coordinates, time, or height of atmospheric levels. The surface scheme should respond with output dependent on a mode flag (enquiry mode, explicit mode, or time-stepping mode). The output variables are all tile averaged.

| Input variables (from atmospheric model)                           | Output variables (from surface scheme)              |
|--------------------------------------------------------------------|-----------------------------------------------------|
| Lowest-level east-west wind speed (m s <sup>-1</sup> )             | Enquiry mode                                        |
| Lowest-level north-south wind speed (m s <sup>-1</sup> )           | Surface albedo ()                                   |
| Lowest-level dry static energy (J kg <sup>-1</sup> )               | Surface emissivity (—)                              |
| Lowest-level specific humidity (kg kg-1)                           | Surface radiative temperature (K)                   |
| Surface pressure (Pa)                                              | Explict mode                                        |
| Solar zenith angle (°)                                             | Éast-west momentum flux (N m <sup>-2</sup> )        |
| Net surface shortwave flux (W m <sup>-2</sup> )                    | North–south momentum flux (N m <sup>-2</sup> )      |
| Fraction of diffuse shortwave radiation ()                         | Sensible heat flux (W m <sup>-2</sup> )             |
| Downwelling longwave radiation (W m <sup>-2</sup> )                | Latent heat flux (W m <sup>-2</sup> )               |
| Rainfall (kg m <sup>-2</sup> s <sup>-1</sup> )                     | Moisture flux (kg m <sup>-2</sup> s <sup>-1</sup> ) |
| Snowfall (kg m <sup>-2</sup> s <sup>-1</sup> )                     | Time-stepping mode                                  |
| Subgrid variance of rainfall (kg m <sup>-2</sup> s <sup>-1</sup> ) | East-west momentum flux (N m <sup>-2</sup> )        |
| Subgrid variance of snowfall (kg m <sup>-2</sup> s <sup>-1</sup> ) | North–south momentum flux (N m <sup>-2</sup> )      |
| $A_s, B_s$ (dry static energy)                                     | Sensible heat flux (W m <sup>-2</sup> )             |
| $A_{q}, B_{q}$ (specific humidity)                                 | Latent heat flux (W m <sup>-2</sup> )               |
| $A_{U}^{\prime}, B_{U}^{\prime}$ (east-west wind component)        | Moisture flux (kg m <sup>-2</sup> s <sup>-1</sup> ) |
| $A_{\nu}, B_{\nu}$ (north-south wind component)                    | Surface radiative temperature (K)                   |



•

• What is the impact of this choice?

# Equations: $c_p(q)$ and L(T)

۲

• in ALADIN-ARPEGE  $c_p$  and L depend on q and T resp.

- in ALADIN-ARPEGE  $c_p$  and L depend on q and T resp.
- in SURFEX they do not

- in ALADIN-ARPEGE  $c_p$  and L depend on q and T resp.
- in SURFEX they do not

 this poses the first question: what kind of flux is provided from SURFEX to AROME?

۲

 Lecture J.-F. Geleyn Prague: "strange new term"

$$c_{p}\frac{dT}{dt} = \frac{1}{\rho}\frac{dp}{dt} - \frac{1}{\rho}\frac{dR_{ad}}{dz} - \sum_{k}\dot{q}_{k}h_{k} + T\sum_{k}c_{pk}\frac{1}{\rho}\frac{\partial}{\partial z}$$
$$J_{q_{k}} - \frac{1}{\rho}\frac{\partial}{\partial z}J_{s} + D_{is}$$

۲

 Lecture J.-F. Geleyn Prague: "strange new term"

$$c_{p}\frac{dT}{dt} = \frac{1}{\rho}\frac{dp}{dt} - \frac{1}{\rho}\frac{dR_{ad}}{dz} - \sum_{k}\dot{q}_{k}h_{k} + T\sum_{k}c_{pk}\frac{1}{\rho}\frac{\partial}{\partial z}$$
$$J_{q_{k}} - \frac{1}{\rho}\frac{\partial}{\partial z}J_{s} + D_{is}$$

 enthalpy change (see Girard 1995 for how to treat this) due to mass changes from incoming particles

# Equations: $c_p(q)$ and L(T) study this?

 fundamental reason: consistency of the equations of the atmosphere and the surface (see atmospheric Eqs. in ALADIN-AROME-ALARO and what is the meaning of the variables)

# **Equations:** $c_p(q)$ and L(T) study this?

- fundamental reason: consistency of the equations of the atmosphere and the surface (see atmospheric Eqs. in ALADIN-AROME-ALARO and what is the meaning of the variables)
- quality of the model: does excluding this dependence have an impact on the quality of the forecast?

•  $c_p(q)$  and L(T)

۲ 

- $c_p(q)$  and L(T)
- S VS.  $c_p \theta$

۲ 

- $c_p(q)$  and L(T)
- S VS.  $c_p \theta$
- neglecting  $Tq_N$

•

- $c_p(q)$  and L(T)
- S vs.  $c_p \theta$
- neglecting  $Tq_N$
- antifi brillation

•

- $c_p(q)$  and L(T)
- S vs.  $c_p \theta$
- neglecting  $Tq_N$
- antifi brillation

• 
$$A_U = A_V$$

•

 this talk is an analysis of the presented 5 questions

•

- this talk is an analysis of the presented 5 questions
- the answers

- this talk is an analysis of the presented 5 questions
- the answers
  - would provide guidelines for the coupling of SURFEX in AROME, ALARO

- this talk is an analysis of the presented 5 questions
- the answers
  - would provide guidelines for the coupling of SURFEX in AROME, ALARO
  - but can only be more solid if tested in the model ...

- this talk is an analysis of the presented 5 questions
- the answers
  - would provide guidelines for the coupling of SURFEX in AROME, ALARO
  - but can only be more solid if tested in the model ...
- can we already get answers before the actual coupling of SURFEX?

#### In ALADIN

۲

 reorganize ACDIFUS as Best et al., test without antifi brillation: difference should be numerical noise guaranteeing a smooth transition and systematic validation

#### In ALADIN

- reorganize ACDIFUS as Best et al., test without antifi brillation: difference should be numerical noise guaranteeing a smooth transition and systematic validation
- switch on the  $Tq_N$  term: was this decision right?

#### In ALADIN

- reorganize ACDIFUS as Best et al., test without antifi brillation: difference should be numerical noise guaranteeing a smooth transition and systematic validation
- switch on the  $Tq_N$  term: was this decision right?
- put the q and T dependence of  $c_p$  and L under a switch: conceptual question and impact yes or no

#### In ALADIN

- reorganize ACDIFUS as Best et al., test without antifi brillation: difference should be numerical noise guaranteeing a smooth transition and systematic validation
- switch on the  $Tq_N$  term: was this decision right?
- put the q and T dependence of  $c_p$  and L under a switch: conceptual question and impact yes or no
- externalize

#### In ALADIN

- reorganize ACDIFUS as Best et al., test without antifi brillation: difference should be numerical noise guaranteeing a smooth transition and systematic validation
- switch on the  $Tq_N$  term: was this decision right?
- put the q and T dependence of  $c_p$  and L under a switch: conceptual question and impact yes or no
- externalize
- add interface + switch  $S \leftrightarrow \theta$ : can we keep the link with ECMWF?

#### In ALADIN

- reorganize ACDIFUS as Best et al., test without antifi brillation: difference should be numerical noise guaranteeing a smooth transition and systematic validation
- switch on the  $Tq_N$  term: was this decision right?
- put the q and T dependence of  $c_p$  and L under a switch: conceptual question and impact yes or no
- externalize
- add interface + switch  $S \leftrightarrow \theta$ : can we keep the link with ECMWF?
- add enquiry mode, antibrillation: what is the best way and does the surface has to be bothered?