Dominique GIARD Jean-Daniel GRIL

Computation of "clim" files for ALADIN : what's new?

(ALADIN WS - Bratislava - June 2005)

CONTENTS

- New geometry
- New options
- Updated computation of orography
- Corrections in biperiodization
\rightarrow Source code available in the second CY29T2 export version thanks to :
F. Bouyssel, Y. Bouteloup, R. El Khatib, D. Giard, J.D. Gril, S. IvatekSahdan,
M. Janousek, F. Taillefer, J. Woyciechowska, and many phasers
\rightarrow Scripts available by Françoise Taillefer and the GCO team
- New databases to be tested next summer ? next winter ?
\rightarrow to be discussed!

New geometry / 1 :

simplified setup of domains ("new EGGX")

- both safer and simpler
- 3 types of projections : Mercator, polar stereographic, Lambert \rightarrow according to the reference latitude ($\theta_{0}=0^{\circ}, \pm 90^{\circ}$, else)
- 6 main pieces of information required :
\rightarrow reference point :
$\left(\theta_{0}, \lambda_{0}\right)$,
(ELATO , ELONO) (${ }^{\circ}$)
\rightarrow centre of the domain: $\left(\theta_{C}, \lambda_{C}\right)$ (ELATC, ELONC) (${ }^{\circ}$
\rightarrow gridpoint resolution: ($\delta x, \delta y$) (EDELX, EDELY) ($m,{ }^{\circ}$)
\rightarrow number of points in the ($\mathrm{C}+\mathrm{I}$) zone (NDGUX, NDLUX)
\rightarrow grid type : "model" : LRPLANE=. T . or "latlon" : LRPLANE= . F .
\rightarrow rotated tilted Mercator projection: LMRT=.T.

New geometry /2 : rotated tilted Mercator projection

North

1. Rotation to the Equator $\left(\theta_{C}, \lambda_{C}\right)$
2. Tilting (β)
3. Projection

New geometry/3:
 Formulae

1. Rotation to the Equator

$$
\begin{aligned}
& \quad(\lambda, \theta) \rightarrow\left(\lambda^{\prime}, \theta^{\prime}\right) \\
& \theta^{\prime}=\arcsin \left[\cos \theta_{C} \sin \theta-\sin \theta_{C} \cos \theta \cos \left(\lambda-\lambda_{C}\right)\right] \\
& \cos \lambda^{\prime}=\frac{1}{\cos \theta^{\prime}}\left[\sin \theta_{C} \sin \theta+\cos \theta_{C} \cos \theta \cos \left(\lambda-\lambda_{C}\right)\right. \\
& \sin \lambda^{\prime}=\frac{1}{\cos \theta^{\prime}}\left[\cos \theta \sin \left(\lambda-\lambda_{C}\right)\right]
\end{aligned}
$$

2. Tilting

$$
\begin{aligned}
& \left(\lambda^{\prime}, \theta^{\prime}\right) \rightarrow\left(\lambda^{\prime \prime}, \theta^{\prime \prime}\right) \\
& \theta^{\prime \prime}=\arcsin \left[\cos \beta \sin \theta^{\prime}+\sin \beta \cos \theta^{\prime} \sin \lambda^{\prime}\right] \\
& \cos \lambda^{\prime \prime}=\frac{1}{\cos \theta^{\prime \prime}}\left[\cos \theta^{\prime} \cos \lambda^{\prime}\right] \\
& \sin \lambda^{\prime \prime}=-\frac{1}{\cos \theta^{\prime \prime}}\left[\sin \beta \sin \theta^{\prime}-\cos \beta \cos \theta^{\prime} \sin \lambda^{\prime}\right.
\end{aligned}
$$

3. Projection

$$
\begin{aligned}
& \left(\lambda^{\prime \prime}, \theta^{\prime \prime \prime}\right) \rightarrow(x, y) \\
& x=a \lambda^{\prime \prime} \\
& y=a \ln \left[\tan \left(\frac{\pi}{4}+\frac{\theta^{\prime \prime \prime}}{2}\right)\right]
\end{aligned}
$$

New geometry /4 :
 Advantages

Flexibility

\rightarrow It can replace the 3 previous ALADIN projections
\rightarrow It can simulate precisely latitude \times longitude domains, such as HIRLAM ones, with just slight differences for y grid lines
Simple formulation of the map factor :

$$
m=\cosh \left(\frac{y}{a}\right) \approx \alpha \cos (y)+\beta \cos (2 y)
$$

Computation of the other geometry-related parameters :
of equivalent complexity ...
Few changes in the setup of domains
\rightarrow reference point : $\quad \theta_{0}=0, \lambda_{0}=\beta$
\rightarrow centre of the domain : $\quad\left(\theta_{C}, \lambda_{C}\right)$
\rightarrow gridpoint resolution: $(\delta x, \delta y)$
\rightarrow number of points in the ($\mathrm{C}+\mathrm{I}$) zone
\rightarrow grid type
LRPLANE=. T
\rightarrow new definitions :

LMRT=.T.

LFPMRT=.T.

```
(Model type)
(Model domain definition)
(Mercator + Tilt definition)
(Rotation definition)
(FullPos domain definition)
```


The 10 Options of 923 Configuration / 1 :

* 1 : description of orography
moving to GLOB95 to GTOPT030 : resolution 2'30 everywhere ?
higher resolution required for research applications (e.g. AROME)
\rightarrow new Manu files at higher resolution?
\rightarrow using local data and EE923 ?
\rightarrow using other interpolation tools and importing orography?
\rightarrow gathering local data into a larger database ?
ネ 2 : other permanent surface characteristics

The 10 Options of 923 Configuration／2 ：

次 3 ：SST，old relaxation values for surface variables
次 4 ：vegetation characteristics
次 5 ：correcting land fields using local high resolution data
次 6 ：correcting relaxation values for surface variables moving to new global databases（E．Bazile，I．Kos，R．Zaaboul，2000）？ \rightarrow resolution 1° instead of 1.5°
\rightarrow moisture from the GSWP experiments
\rightarrow temperature and snow from 2 years of ARPEGE analyses

The 10 Options of 923 Configuration / 3 :

* 7 : improving sea and lakes description using local data
\star 8 : coefficients for ozone description
3 monthly 2d fields
input : 1 global file, resolution 2.5°
* 9 : aerosols

4 monthly 2 d fields
input: 1 global file, resolution 5°

* $\mathbf{1 0}$: aqua-planet
all fields in one run, SST as input (file or namelist)

Update of the computation of spectral orography /1 :

*a jump of 5 cycles and significant cleaning
now independent from changes in minimization for variational applications increased ARPEGE - ALADIN consistency, unused options removed
\geqslant formulation of the cost function to be minimized (or not)
$J=J^{G P}+J^{S P}$
$\boldsymbol{J}^{G P}$: gridpoint component, to damp Gibbs oscillations, especially over low areas "Bouteloup":
"Jerczynski":
$f_{\text {ext }}$: weight in the extension zone, from 1 to $1 /(1+$ SCEXT $)$

Update of the computation of spectral orography /2 :

$J^{S P}:$ spectral component, to damp the smallest scales (at least $2 \Delta x$)
$J^{S P}=\sum_{m, n} \exp \left(\left(k_{m, n}-\boldsymbol{F L I S B}\right)^{\boldsymbol{F L I S A}}\right) h_{m, n}^{2}$

Tuning parameters are domain dependent !
*case of a "linear" spectral truncation spectral orography must be filtered :
\rightarrow optimization with a quadratic spectral truncation, based on $J^{G P}$, then import
\rightarrow direct optimization, based on $J^{G P}+J^{S P}$

Changes in biperiodization :

Physically meaningful values are required also in the extension zone :
\rightarrow performed by Full-Pos
Mistake in the original design :
\rightarrow correction by Full-Pos over the whole domain : too much !
Bug corrected now :
\rightarrow impact on climatological snow coverage (wider)
\rightarrow potential positive impact on the initialization of snow cover

$$
8^{6}
$$

