3D-VAR data assimilation in Aladin/France

Claude Fischer; Thibaut Montmerle; Ludovic Auger; Loïk Berre; Wafaa Sadiki; Simona Stefanescu

15th ALADIN workshop, Bratislava

What is in it ?

- Incremental 3D-VAR, using 80-90 % of the common Arpège/IFS code
- Continuous assimilation cycle, 6 hour frequency, long cutoff assimilation cycle and short cut-off production, coupled with Arpège, Analysis=Model gridmesh=9.5 km
- **Observations:**
 - Surface pressure, SHIP winds, synop T2m and RH2m
 - Aircraft data
 - SATOB motion winds
 - Drifting buoys
 - Soundings (TEMP, PILOT)
 - Satellite radiances: AMSU-A, AMSU-B, HIRS, Meteosat-8 SEVIRI
 - No QuikSCAT

Ensemble B matrix

- Background error covariances are sampled from an ensemble of Aladin forecasts, with initial conditions from an ensemble of Arpège analyses: « ensemble Jb »
- Sample: over 48 days, two pairs of 6 hour forecasts are extracted from the ensemble, and their difference is computed => 96 elements in the sample
- Berre etal. (2005) and Stefanescu etal. (2005)
- Total error variance is calibrated a posteriori (empirically for the time being), later using the works of B. Chapnik and W. Sadiki (evaluation of *Tr(HK)*) => inflate background standard deviations by a factor of 1.8 (1.5)

Tuning of background and observation error variances $\begin{cases} S_o(s_o, s_b) = \frac{2E(J_o^{\min})}{Tr(I_p - HK)} \\ S_b(s_o, s_b) = \frac{2E(J_b^{\min})}{Tr(KH)} \end{cases}$

Desroziers and Ivanov, 2001: (So, Sb) ?

For a consistent system >> So = Sb = 1

For a LAM system:

- How to compute the Trace ? -> Monte-Chapnik etal., QJRMS, 2004 Carlo method (Girard, 1987)
- How to compute the statistical expectation ? -> use a time mean over a suitably long range
- Samples of small size -> aggregate analysis times together
- Applied to the NMC statistics

June 6-10, 2005

Sadiki and Fischer, Tellus, 2005

Sensitivity experiments

	3d-Var ALADIN experiments over 1 month	S _o	S _b
⇒ 3d-Var ARPEGE $S_a = 0.8 < 1$	NMC-lagged background=P06H	0.86 < 1	1.67 > 1
EALEA	Standard NMC statistics	0.6	0.53
	Ensemble statistics		1.44 (by comparison with NMC)

15th ALADIN workshop, Bratislava

Early tests

A 2 week period in July 2004

15th ALADIN workshop, Bratislava

Lessons:

Precipitations:

- [0,3h] => caution (impact of initialisation, of imbalances ...);
- [3,12h] => the assimilation cycle(s) produce their own solution, which compares competitively with dynamical adaptation (to be confirmed by ongoing E-suite!);
- [12,24h] => a limit of predictability somewhere in this range ??
- RMS(Dyn Adap 3DVAR) for 6 hour precipitation (mm/6h), for three days of the test period:

	07/07	08/07	22/07
P12-P6	2.32	2.08	1.75
P24-P18	1.37	1.44	1.10

15th ALADIN workshop, Bratislava

Aladin 3D-VAR data assimilation Use of Météosat-8/SEVIRI in the 3DVar of ALADIN MEAN WEIGHTING FUNCTIONS OF SEVIRI CHAR

Data processing :

 1 pixel out of 5 is extracted and thinning boxes of 70 km are applied

• IR 3.9 $\mu\,$ and ozone 9.7 $\mu\,$ are blacklisted, as well as IR channels over land

• constant, uniform bias correction applied to the other channels, *recently changed to a predictor, case-dependent b.c.*

• empirical σ_o are used

 first-guess quality control removes too large innovations

• CMS/Lannion cloud classification is used to keep IR 8.7 μ , 10.8 μ ,12 μ and 13.4 μ only in clear sky while the two WV channels are also kept over low clouds

LOCAL ZENITH ANGLE = 55 dec

15th ALADIN workshop, Bratislava

Impact study : Precipitation forecast

2004/07/18 12UTC RR P12 – P6

15th ALADIN workshop, Bratislava

E-suites: V1 and V2

- V1: 23 March through 22 May, 2005 =>
 - Deteriorated MSLP bias and RMS by about 0.2 hPa
 - Too strong precipitation amounts at short range (6h, 12h), with significant spin-down
 - Analyses too wet compared to RS
 - No increase in the number of « Aladinades » (which is a relief, given the problems on humidity and RR)
- V2: started 2nd of June, scheduled for about 1.5 month
 - Improved SEVIRI bias correction, using a case/location-dependent b.c. (with 4 predictors)
 - Infrared channels over land blacklisted (problem of poor quality surface temperature)
 - Additional surface observations ready: T2m, RH2m => quite complementary with SEVIRI data
 - Digital filter initialization: back to settings from dynamical adaptation
 - Reduced weighting of Jo with respect to Jb: Sb decreased from 3.24 to 2.25

In the near future

3D-VAR FGAT

- non-linear balance, β-plane
- Jk extra cost function to fit towards the ARPEGE analysis
- « new » humidity control variable
- Better understand the intrication between digital filter initialization, coupling and B-matrix dynamical balances
- Innovating observations for the mesoscale: sampling of satellite data, QuikSCAT, V10m, radar reflectivity
- Applications in AMMA, Arome
- Code convergence with the Hirlam group: mesoscale multiincremental 4D-VAR (?)
- Next 4 year mid-term Aladin scientific plan

Aladin collaboration

- Aladin-NORAF (Casablanca): internal E-suite runs daily
- Aladin-Hungary: operations since 17 May 2005
- Cross-border scientific activities:
 - LAM wavelets (A. Deckmyn & L. Berre)
 - LAM ensemble B statistics (S. Stefanescu & L. Berre)
 - AD model development (C. Soci, C. Fischer)

End of talk

Now come some extra slides for whatever

. . .

15th ALADIN workshop, Bratislava

Statistics in the space of observations

exp:OPER obstat 2004070600-20(exp:304l obstat / ref: 20WY 2004070600-2 RAOB-T Aladin RAOB-T Aladin used T any instrument used T

ATOVS channels

15th ALADIN workshop, Bratislava

Scores QPF: raingauges \Leftrightarrow P12-P6 5 through 23 July 2004

With SEVIRI : better POD and ETS, <u>but</u> bigger biases, especially for small thresholds \Rightarrow possibly due to vertical propagation of increments

 \Rightarrow Use surface data to counter this bias ?

15th ALADIN workshop, Bratislava

2005/03/30 12UTC RR P12 - P9

Radar cumulated RR

15th ALADIN workshop, Bratislava