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We study the combined effect of anisotropic surface tension and interface kinetics on pattern formation during the growth of
two-dimensional crystals under conditions such that the growth is governed by interfacial processes. For sinusoidal anisotropies
having fourfold symmetry, we compute numerically the trajectories of elements of the interface having constant crystallographic
orientation. Our results display many of the features derived from general consideration by Angenent and Gurtin. We concentrate
on the formation or suppression of corners (missing orientations) and develop an asymptotic analytical representation to explain
our results. As a test of our numerical techniques, we treat the very special case for which the anisotropy of surface tension is
proportional to the anisotropy of the interface kinetic coefficient, and show that the growth pattern, starting from a shape similar to

the equilibrium shape, preserves its shape, as proven by Soner.

1. Introduction

The formation of patterns in crystal growth is
a free-boundary problem in which the interface
that separates the crystal from a nutrient phase
moves under the influence of nonequilibrium
conditions [1-5]. The resulting patterns depend
markedly on conditions in the nutrient phase, e.g.
temperature and concentration, which influence
the growth speed of each element of the inter-
face. Furthermore, the growth speed of each ele-
ment also depends on the local geometry of the
interface, specifically on the interface curvature
and the orientation of the interface relative to the
crystal axes.

The local growth speed of an interface can, in
principle, be determined by solving the transport
equations that take into account the following
elementary processes: (1) a diffusion process for
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the transport of latent heat and/or solute liber-
ated at the interface, and (2) an interface kinetic
process [6—9] for transformation of an amorphous
phase into a crystalline phase at the interface at a
rate determined by the deviation from local equi-
librium conditions, which depend on interface
curvature.

The combined effect of anisotropic kinetics
and surface tension on crystal growth has been
treated in a few special cases, e.g. with respect to
the morphological instability of spheres [10], cir-
cular cylinders [11] and planes [12]. The stabiliz-
ing influence of kinetics and surface tension on
large facets has been discussed [13]. Moreover,
the possible effect of anisotropy on the growth of
the primary stalk of a dendrite has been investi-
gated [14-18]. It has been shown that anisotropic
surface tension plays an important role in stabiliz-
ing the tip of a dendrite primary stalk in the
absence of interface kinetics [16—-17]. A study of
the effect of anisotropy of interface kinetics on
crystal growth forms has been carried out [18], in
which it was found that the anisotropic interface
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kinetics can also act to suppress tip splitting.
Severe anisotropy of interface kinetics, for which
the kinetic coefficient has singularities in the
form of deep cusps, plays a very important part in
the formation of facted shapes in growth from a
vapor, such as for snow crystals [19].

Cahn, Taylor and Handwerker [20] have pub-
lished an extensive review of the classical work of
Frank [21] on the motion of boundaries governed
by a local anisotropic kinetic law and have ex-
tended this work in several aspects. More re-
cently, Taylor, Cahn and Handwerker [22] have
set forth nine methodologies for solving such
problems. Taylor [23] has also investigated the
fundamental mathematical basis of boundaries
that move according to a law that depends on
mean curvature or weighted mean curvature.

Gurtin [24] has derived equations and bound-
ary conditions for boundary evolution under the
influence of anisotropic kinetics and surface ten-
sion from very general principles: force balance,
energy balance, and entropy production. His
boundary conditions are of a similar form to
those used previously [10-12]. Such boundary
conditions were motivated previously on the basis
that the growth speed must be the same whether
calculated from balance laws or from irreversible
kinetic processes on an atomistic scale that de-
pend on conditions local to the interface. Subse-
quently, Angenent and Gurtin [25] have made an
extensive analytical study of boundary motion in
two dimensions for an isothermal interface mov-
ing under the influence of anisotropic surface
tension and kinetics. Our results for a specific
choice of anisotropy display many of the features
derived from general considerations by Angenent
and Gurtin.

In this article, we examine the combined effect
of anisotropic surface tension and interface kinet-
ics on pattern formation during the growth of a
two-dimensional crystal under conditions such
that the transport of heat and/or solute is so
rapid that growth is controlled by interfacial pro-
cesses. In particular, we study by numerical meth-
ods the influence of sinusoidal anisotropies hav-
ing fourfold symmetry on the formation or sup-
pression of corners of a crystal, starting from a
crystal of circular shape. As a test case of our

numerical methods, we also treat the very special
case in which the kinetic coefficient and the sur-
face tension are proportional, starting from a
shape similar to the equilibrium shape.

Numerical models for time evolution of an
interface have recently been developed [16-
19,26]. They are, however, unsatisfactory for the
description of trajectories of elements of inter-
face having constant crystalline orientation. To
compute these trajectories and the concomitant
interface shape, we perform a direct numerical
integration of a nonlinear equation for the inter-
face curvature. For the case in which the growth
speed is independent of curvature, these trajecto-
ries are characteristic curves of the underlying
differential equation [20-22,27,28].

The layout of this paper is as follows. In sec-
tion 2, our model and equations for tracking an
interface are introduced. In section 3, we present
the numerical results of time evolution of an
interface. Finally, in section 4, we discuss these
results.

2. The model
2.1. Growth speed of the interface

We begin by considering a two-dimensional
one-sided model (transport only in the liquid
phase) in which an undercooled liquid phase sur-
rounds a single crystal of pure material, and
proceed to show how this leads to a local model
when transport in the bulk phase is very rapid.

We rescale all lengths by an amount

4 YoI'm
L(Ty—1,) ;

*

(1)

where vy, is the average surface tension, L is the
latent heat of fusion per unit volume of the
crystal, Ty, is the bulk melting temperature of a
pure material and 7, is the liquid temperature
far from the interface. For isotropic surface ten-
sion, R* would be the nucleation radius. Time is
scaled by

gei(RE Yoosils/er
[ T[\'{_ T‘r.

: (2)
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where a is the thermal diffusivity and ¢, is the
specific heat per unit volume of the liquid.
Assuming that the interface moves sufficiently
slowly that the thermal field has time to relax
practically to its steady state value, the tempera-
ture field is governed by the Laplace equation,

AU =0, (3)

where U is the dimensionless temperature given
by U=(T-T,)/(Ty,— T,). The boundary condi-
tions are as follows:

U(R,) =0, (4)
~(VU.ﬁ)i11lur1';lcu = V! (5)

where R, is the dimensionless radius of the outer
boundary, f is the unit normal vector to the
solid-liquid interface, pointing into the liquid,
and V is the local normal growth speed of the
interface.

If we define the thickness, 8, of the dimension-
less thermal diffusion boundary layer by the
equation U, /8 =(=VU " A)crruces Where U, s
the interfacial temperature, we can rewrite eq. (5)
in the form

U,/s=V. (6)

We assume that the local normal growth speed,
V, of the interface is also calculable from irre-
versible interface Kinetic processes on an atom-
istic scale that depend on conditions local to the
interface, resulting in an equation of the form

V=p(0) (UIE—UI)v (7)

where p(8) is the dimensionless kinetic coeffi-
cient scaled by R* /t*, 6 is the angle made by the
normal to the interface and a principal crystal
axis, and Ug is the local equilibrium melting
temperature. The quantity U depends on the
dimensionless local curvature K, the surface ten-
sion vy, scaled by the average surface tension Yo
and the second derivative of y with respect to 6,
according to the equation

Ug=1-(v+vp)K. (8)

In eq. (7), B(#) represents the relative rate of
growth of the crystalline phase into the liquid

phase. We assume that 8 depends only on 6;
whereas, more generally, 8 depends also on other
factors such as U; and K [12].

Substituting U, of egs. (6) and (8) into eq. (7),
we obtain the self-consistent growth speed:
V= I_(')’TYM)K‘ (9)

B '+6

The denominator of eq. (9) represents the rela-
tive resistances of each process [30-32]. In gen-
eral, 8 is a function of position along the inter-
face, and must be determined by solution of a
nonlocal problem. Assuming, however, that the
transport of heat is rapid, we can neglect & com-
pared to 8, and the growth speed V is deter-
mined by local kinetic processes. Thus, approxi-
mately,

V=B(0) [1-(v+7u)K]. (10)

The remainder of this paper is based on the
supposition that eq. (10) is exact. It has the same
form as eq. (1.2) of Angenent and Gurtin [25].

2.2. Equations of the growing interface
Fig. 1 shows schematically part of a growing

interface. Let r(u, t) represent the position vec-
tor of the interface at a given time ¢, where u is a

ligquid

solid

mterface
Fig. 1. Schematic illustration of a growing interface between
solid (crystal) and liquid. At position r, # is the local normal
vector that makes an angle § with respect to the x axis and
is the local tangent vector in the direction of increasing values
of the parameter u.
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suitably chosen parameter. In Cartesian coordi-
nates,

r=(x(u,t), y(u,t)). (1)

The partial derivative of r with respect to ¢
holding « constant is

r,=Va+V,i, (12)

in which V| is a tangential growth speed of the
interface for growth along trajectories of constant
u, fi is the unit outward normal vector and £ is
the unit tangent vector pointing toward increas-
ing u. The unit vectors 7 and f are given by

i = (cos 0, sin 0), f=(—sin 8, cos §), (13)
where cos 0 =y,/(x2+y2)'"? and sin 6=
—x,/(xZ+yH'"2 in which subscripts denote
partial differentiation.

The partial derivative of r with respect to u
holding ¢ constant is

r,=f(u, O)f, (14)
in which f(u, t) = |r |, thatis, f=ds/0u. Here s
is arc length of the interface, measured positively
in the direction of increasing u.
We differentiate eq. (12) by u and eq. (14) by
t. Assuming conditions such that the order of
differentiation is irrelevant, we obtain
—f()‘_ ~ l/;r P eer.L 2 (15)
f,=V0,+V, Jou. (16)
From eqs. (12), (14) and (15), and the equation
for the total derivative of @,

de du

—=0,—+6
dt dt

0o (17)

we obtain the total derivative of r with respect to

I

dr A l(V dey 8

—=Vn+0 + = |t.

{.i! [ i fd! ( )
In the same manner, we find the total deriva-

tive of curvature K = 86 /ds at the interface:

dK

T =f_2 2L Vﬂi? = V:m + Vuemren_]
dt
g i ‘A9
+("fu+18uu9n )a g (]9)

We treat the case of a convex crystal, in which
case r(0, t) is a single valued function of 6. We
choose =6 in which case f=0ds/00=K"
Then, we examine trajectories of constant @, in
which case d/d¢ =0, and eqs. (18) and (19) take
the form

dr o av %0
S e et

d¢ along # = const. 06 ( )
dK . i 4

— =-—-K-|V+ o 1 (2])
dt along 0 =const. of

where ¢ is held constant in the derivatives with
respect to 6.

Under the condition that V' depends only on 6,
the ratio I to 9V//86 in eq. (20) is a constant for a
given 6, and the trajectories are straight lines, as
is well known [21]. For V' given by eq. (10), eq.
(21) becomes

K,=K2[(aK),,,,+arK—(,BM+B)], (22)

where a = B(y + y,,). Eq. (22) is the same (ex-
cept for notation and sign convention) as eq. (5.6)
of Angenent and Gurtin [25]. Provided that a > 0,
this equation is just a nonlinear diffusion equa-
tion for K and can be integrated numerically.

In the next section, we show the results of
numerical integration of eq. (22) for sinusoidal
anisotropies having fourfold symmetry, along with
the corresponding interface shapes. We do not
treat the case of a <0 for which eq. (22) is
backward parabolic and has been discussed by
Angenent and Gurtin.

3. Numerical results

We assume that the anisotropy of the kinetic
coefficient is sinusoidal and has fourfold symme-
try as follows:

B(8) = Bo[1 — e, cos(40)], (23)

where S8, is a constant, # is the angle between #
and the x axis, and €, characterizes the degree of
anisotropy.

Fig. 2 shows the growth pattern for anisotropic
interface kinetics for B, = 0.1 and €, =0.2 in the
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absence of surface tension (y(8)=0) for an ini-
tial crystal radius R, = 2. The trajectories shown
in the first quadrant are straight lines, and the
crystal develops sharp corners (places where there
are missing orientations) that sharpen with time
as the crystal approaches an asymptotic shape.

We next consider the effect of surface tension
on crystal shape. We assume a form of anisotropy
of surface tension similar to the anisotropy of the
kinetic coefficient:

v(0) =1—¢€, cos(40). (24)

Here, €, gives the degree of anisotropy. Fig. 3a
shows the growth pattern for the same conditions
as fig. 2 except for isotropic surface tension, i.c.
€, =0, so that y(8) = 1. Fig. 3b shows the curva-
ture as a function of @ for each time step corre-
sponding to fig 3a. Fig. 3¢ shows the curvature for
some early times when the deviations from con-
stant curvature are developing. Thus the curva-
ture first deviates from its initially constant value
of 0.5, forming a peak near 6 = /4 which decays
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Fig. 2. Growth pattern for anisotropic interface kinetics in the

absence of surface tension, i.e. y(#)= 0. The contours repre-

sent the interface at equal intervals (47 = 20) of time begin-

ning with ¢ =0. The anisotropy of the kinetic coefficient is

given by eq. (23) with B8, = 0.1 and €, = 0.2, The initial crystal
radius R, = 2.

with time as illustrated in fig. 3b. Sharp corners
on the growth pattern do not develop because of
the Gibbs-Thomson effect which dominates for
large K. We note that the trajectories near these
rounded corners tend toward parallel lines in-
stead of converging along shocks to produce sharp
corners, as in fig. 2,

The growth pattern for the same conditions as
fig. 3 except for isotropic kinetics, i.e. €, =0, is
shown in fig. 4a. Fig. 4b shows the curvature as a
function of @ for each time step corresponding to
fig 4a. Deviations from circularity are evident at
short times because of the anisotropic surface
tension which affects the growth pattern for crys-
tals of small size and large K. The patterns
become more rounded with increasing crystal size
because of the decrease of K, and the peak of
curvature fades away with time as shown in fig.
4b.

The combined effect of anisotropic surface
tension, €, = 0.05, and anisotropic interface ki-
netics, €, = (0.2, on crystal pattern is shown in fig.
S5a. The corresponding curvature as a function of
0 for each time step is shown in fig. 5b. The
major change, in comparison with fig. 3, is that
the corners have higher curvature, and a strong
peak in the curvature remains, as shown in fig.
Sb. This occurs because €, and e, have been
chosen to have the same sign. We discuss the
asymptotic form of these rounded corners in de-
tail in the next section.

Soner [29] has shown that if the anisotropy of
the surface tension is proportional to the
anisotropy of the interface kinetic coefficient, i.e.
€, = €, in our case, and the initial shape is chosen
to be geometrically similar to the equilibrium
shape, then the growth pattern preserves its shape
for all time. For €, < 1/15, we have y + y,, > 0,
and the equilibrium shape corresponding to V' = ()
in eq. (10) is given by [33]

rl.:q(ﬁ) = ‘Yﬁ A -YFJF' [25)

In fig. 6 we demonstrate numerically that the
growth pattern, starting from a shape similar to
but five times larger than that given by eq. (29),
preserves its shape for €, =€, =0.03. This pro-
vides a test of our numerical methods. In the next
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Fig. 3. (a) Growth pattern for anisotropic interface kinetics in the presence of isotropic surface tension, i.e. y(0)= 1. The anisotropy

of the kinetic coefficient is given by eq. (23) with 8, =0.1 and €, =0.2. The initial crystal radius R, = 2. The time intervals are the

same as for fig. 2. (b) The curvature as a function of # for each time step corresponding to (a). (¢) The curvature corresponding to

(a) as a function of 6 from =0 to = 2. The deviations from constant curvature K = 0.5 are developing with time. The time
intervals are Ar = 0.2.
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Fig. 3. Continued.

section, we discuss further why the growth form
preserves its shape under these conditions.

4. Discussion

We first discuss the asymptotic shape of cor-
ners. Frank [21] proved that the trajectory of an
element having constant orientation on the inter-
face is parallel to the normal to the polar diagram
of the reciprocal, V™!, of the growth speed at this
orientation. We show in fig. 7 the polar diagram
of (V/By)~" corresponding to fig. 2; here, V!
depends on the orientation 6. From Frank’s the-
ory, the following results may be deduced [34]:
The normals to the polar diagram between the
tangent points P, and P, in fig. 7 are converging.
As a result, the trajectories in fig. 2 correspond-
ing to the orientations between P, and P, will
intersect and disappear, and the asymptotic shape
will not have orientations between P, and P,.
Starting from a circle, corners form and sharpen

with time as more orientations between P, and P,
become missing, resulting asymptotically in cor-
ners determined by the orientations correspond-
ing to P, and P,.

On the other hand, if the growth speed V
depends not only on # but also on the curvature
K, the polar diagram of V~! changes, because K
changes with time. Fig. 8 shows polar diagrams of
(V/By)~"' corresponding to fig. 3a at two differ-
ent times; the solid line corresponds to the initial
shape in fig. 3a and the dotted line corresponds
to the final shape in fig 3a. The dotted line is
convex and is nearly straight near the /4 direc-
tion, as well as in other directions related by
symmetry; the corresponding trajectories of con-
stant orientation in fig. 3a are parallel lines near
these directions and the rounded corners have
nearly constant curvature.

We next consider the asymptotic shape of the
rounded corners in figs. 3, 4 and 5 as a function
of the anisotropies of B(6) and y(6). We conjec-
ture that an asymptotic shape exists near these



