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ABSTRACT

X-ray  micro-tomography  has  become  an  essential  tool  to  investigate  the  mechanical  and  physical  
properties of snow, which are tied to its microstructure. A crucial step in the 3D image processing is the  
binary segmentation of the grayscale X-ray attenuation coefficient image to a binary ice/pore image. In the 
snow community, this step is usually based on global thresholding conducted with smoothing filters. In 
practice,  this  standard  segmentation  method  presents  drawbacks  and  often  requires  time-consuming 
manual  post-processing.  We  use  a  segmentation  method  based  on  the  minimization  of  an  energy 
function.  The  energy  definition  formally  expresses  the  segmentation  criteria  and  clearly  defines  the 
effective  resolution  of  the  output  image.  Moreover,  the  global  optimization  through  graph-cuts  is  
particularly robust. We applied this method to different snow images and we successfully compared the 
results  to  standard  segmentation  techniques.  Finally,  the  segmentation  sensibility  to  the  smoothness 
parameter is analyzed. 

1. INTRODUCTION

Natural  snow exists very close to its melting point.  Thus, once fallen on the ground, snow undergoes 
metamorphism  due  to  rapid  recrystallization.  The  shape  and  the  arrangement  of  snow  grains  are 
extremely variable because of metamorphism (see Figure 1), and determine most of the mechanical and 
physical properties of snow. Characterizations of the snow microstructure with bulk variables or variables 
derived  from 2D images of  snow are  often poor  to  understand  the  snow properties  (Shapiro  1997). 
Therefore, acquiring 3D representations of the ice matrix at a scale of a few microns is essential in snow 
research.
The main technique to image snow samples is X-ray micro-tomography (µCT, e.g. Coléou et al. 2001). To 
allow quantitative analysis of the snow structure,  the X-ray attenuation coefficient  image needs to  be 
reduced to a binary ice/pore image. Binary segmentation is a crucial image processing step because it  
affects  all  subsequent  quantitative  analysis  and modeling.  In  snow research,  segmentation  is  usually  
based on global thresholding combined with smoothing filters. Some studies have pointed out the difficulty  
to find the best threshold value, especially if the grayscale histogram is uni-modal (e.g. Kerbrat 2008). 
However few attention was paid to the effect of the binary segmentation algorithm. Iassonov et al. (2009) 
compared  various  segmentation  techniques  and  concluded  that  global  thresholding  methods  yield 
unsatisfactory segmentation and that  the use of local  spatial  information is crucial  for  obtaining good 
segmentation.
We propose  to  apply  an advanced segmentation  technique  to  snow µCT images:  the  energy-based 
segmentation (Boykov 2001). This method consists in finding the segmentation that minimizes a certain 
energy function.  The definition of the energy  makes the approach flexible  and transparent  by clearly 
expressing  the  segmentation  criteria.  The  global  optimization  via  graph  cut  makes  the  approach 
particularly robust and reproducible.

2. MATERIAL AND METHOD

2.1. Snow sampling and µCT measurements

Snow is a very fragile material. In particular, snow types involved in avalanche releases, such as depth  
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hoar, are difficult to handle and require a specific sampling procedure (Flin et al. 2003). Once sampled in  
the field, the snow core is impregnated by liquid 1-chloronaphthalene («chl», melting point -15/-20°C) at 
temperature about -8°C. Then, the mixture ice/chl  is allowed to freeze and stored in a refrigerator at 
−20°C. This sampling procedure strengthens the snow sample and blocks any possible microstructure 
evolutions due to metamorphism.
In this study, two types of snow with completely different grain shapes are considered (Figure 1). Sample 
1 is a melt-freeze crust  (MFcr according to the International  Classification for Seasonal Snow on the 
Ground). Sample 2 is composed of depth hoar (DH) and faceted crystals (FC).

Figure 1: 3D representation of the snow microstructure of samples 1 and 2 (2503 voxels).

The  X-ray  attenuation  coefficient  3D images  (about  10003 voxels)  were  acquired  with  a  cone  beam 
tomograph (RX Solutions, generator voltage of 100 kV, generator current 100 µA corresponding to a mean  
X-ray excitation energy of about 20 keV) using a specifically designed refrigerated cell (Flin et al. 2003).

Figure 2: µCT output image (600*400 pixels) and its corresponding histogram. The scanned samples are 
composed of three materials: chl (red), ice (green/blue) and residual air bubbles (dark blue) due to an 

incomplete impregnation of the sample. The contour of ice resulting from the segmentation is plotted with 
a black line.

The µCT output images (Figure 2) are approximate representations of the X-ray attenuation coefficient  
and are affected by optical transfer function, scatter and noise. Thus, the grayscale image is noisy and the 
transition between different materials is fuzzy. In particular, contours of air bubbles in chl appear as ice 
envelops because of the partial  volume effect.  These artifacts yield to an important number of mixed 
voxels whose gray value does not determine whether they belong to the object or to the background. That  
is why the binary segmentation of µCT images is not straightforward.

2.2. Energy-based segmentation

The energy-based segmentation method consists in finding the optimal segmentation L according to an 
energy function E. This method is robust because the segmentation criteria are objectively defined in the 
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energy function and the optimization process is global and automatic.

2.2.1. Energy function

The energy function of this study is composed of two terms: a data fidelity term and a regularization term.
The local  gray value is the most obvious criterion in the segmentation process. For instance, a voxel  
whose intensity is very close to the intensity of air is inclined to be air, i.e., to belong to the background.  
This idea can be formalized with proximity functions P that penalize the segmentation of one voxel to ice 
or to the background. The proximity function ranges between 0 (furthest) to 1 (closest) and numerically 
quantifies the fidelity F(L) of the segmentation to the initial gray level of the voxel. The exact expression of 
the proximity functions might vary according to the grayscale image type. They are generally inferred from 
the analysis of the grayscale histogram out of which an intensity model is derived.
The surface area S(L) of the segmented object is, here, the spatial regularization term of the segmentation 
energy. A voxel with a mixed gray value will be segmented so that the interface ice/background area is  
minimized.
By assigning a relative weight r to the regularization term, the smoothness of the segmented snow can be 
controlled.  The smoothness parameter  r  controls  the minimum optical  radius of  protuberances of  the 
segmented object. The size of the smallest structure details preserved by the segmentation is thus clearly 
defined.

2.2.2. Energy optimization

The established energy functional has to be minimized to find the optimal segmentation. For this purpose, 
the optimization of binary energies via graph-cut is well suited (Boykov et al. 2001). This method consists  
in transforming the binary energy optimization problem into the problem of finding an optimal cut in a 
graph,  which  is  solvable  in  polynomial  time.  Unlike  variational  approaches,  the  optimization  problem 
through graph-cut is directly defined on a discrete set of variables and the global optimality is guaranteed.  
A scalable graph-cut algorithm (Delong 2008) that enables the segmentation of massive grids was used in 
this work.

3. RESULTS

Figure 3: Density and specific surface area (SSA) as a function of the smoothness parameter r for two 
different snow samples.

Without an absolute reference, it is difficult to quantify the accuracy of the segmentation on µCT images.  
Therefore, the energy-based segmentation was first tested on a reference image degraded with artificial 
blur and µCT white noise. The Koch snowflake was chosen as a reference for its multiscale properties,  
allowing thus to check the method depending on the complexity of the physical object. On this synthetic  
image, the energy-based segmentation was found to be accurate above the size of the noise asperities.
The energy-based segmentation algorithm was then applied on the snow samples described previously 
for various values of the segmentation smoothness parameter. The results are consistent with standard 
segmentation methods (Figure 3) but, here, the segmentation parameters are more physically meaningful.
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The segmentation parameter r  affects structural  variables as density and specific surface area (SSA)  
defined as the surface area per unit mass. The density of the segmented object does almost not vary with  
r (Figure 3). Density slightly decreases when r increases because the snow structure is generally convex 
and smoothing  tends to  erode convex zones.  SSA is  more  sensitive  to  the segmentation parameter 
(Figure 3). Two regimes can be distinguished. For very low values of r (<5 µm for the considered images), 
the SSA decreases rapidly when r increases. This regime corresponds to the smoothing of the noise on 
the interface.  For  larger  values  of  r,  the SSA is  constant  or  decreases slowly with  r.  For  sample 1, 
composed of a melt-refrozen crust, there is no variation of the SSA with r because the interface is naturally 
already smooth. For sample 2, the SSA slightly decreases with r due to the sharpness of the considered  
sample. The real details of the snow structure contributing to the overall SSA are progressively smoothed 
down with an almost constant slope.
When the scale of noise is clearly separated from the detail  scale as on sample 1, the segmentation  
parameter  can be indifferently taken in the range [5,  40]  µm. When these two scales are not  clearly 
separated as on sample 2, the choice of r is more difficult. The best segmentation is obtained when most 
of the noise is smoothed, but the snow details are preserved. This segmentation may be obtained at the 
transition between the two described regimes, i.e. when the SSA starts to vary linearly with r.

4. CONCLUSION

The energy-based segmentation approach was successfully applied to microtomographic images of snow 
and leads to results that are in good agreement with those of standard segmentation methods. In addition, 
the presented method overcomes the limitations of threshold-based methods usually considered in snow 
research:

-The regularization term minimizing the ice/air interface is of particular interest for materials such as 
snow where sintering naturally tends to reduce the surface and grain boundary energy.

-The  energy  function  is  directly  estimated  on  the  segmented  object,  thus,  the  smoothness 
parameter defines the effective resolution of the binary image.
The influence of the smoothness parameter on density and SSA of segmented snow images has been 
investigated. This analysis emphasizes some important considerations to take into account in order to  
compute a reliable SSA value, especially for snow with structure details on the order of noise asperities.
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