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X - 2 CALONNE ET AL.: HEAT AND MASS TRANSFER WITH CONVECTION

Appendix: Asymptotic analysis - Case B1

Taking into account the order of magnitude of the dimensionless numbers in the Case

B1,
[
FT

i

]
= O

([
FT

a

])
= O ([Fρa]) = O(ε2), [Re] = O

([
PeT

])
= O ([Peρ]) = O (ε),

[Q] = O (ε−1), [N] = O (ε−1), [M] = O (ε2), [K] = O (1) , [H] = O (ε2) , [W] = O (ε2), the

dimensionless microscopic description (Equations (13)-(22)) becomes:

ερ∗ava
∗ · grad∗ va

∗ = µ∗
a∆

∗va
∗ − ε−1grad∗ p∗a in Ωa (B.1)

div∗ va
∗ = 0 in Ωa (B.2)

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
− div∗(κ∗igrad∗T ∗

i ) = 0 in Ωi (B.3)

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
+ ερ∗aC

∗
ava

∗ · grad∗ T ∗
a − div∗(κ∗agrad∗T ∗

a ) = 0 in Ωa (B.4)

ε2∂ρ
∗
v

∂t∗
+ εva

∗ · grad∗ ρ∗v − div∗(D∗
vgrad∗ρ∗v) = 0 in Ωa (B.5)

ρ∗a(ε
2w∗ − va

∗) · nΓ = −ερ∗iw∗ · nΓ on Γ (B.6)

va
∗ · tΓ = 0 on Γ (B.7)

T ∗
i = T ∗

a on Γ (B.8)

κ∗igrad∗T ∗
i · nΓ − κ∗agrad∗T ∗

a · nΓ = ε2L∗
sgw

∗ · nΓ on Γ (B.9)

D∗
vgrad∗ρ∗v · nΓ = ε2ρ∗iw

∗ · nΓ on Γ. (B.10)

This set of equations is completed by the Hertz-Knudsen equation and the Clausius

Clapeyron’s law, Eq. (11) and (12), expressed in dimensionless form as:

w∗
n = w∗ · nΓ =

1

β∗

[
ρ∗v − ρ∗vs(T ∗

a )

ρ∗vs(T
∗
a )

− d∗0K∗
]

on Γ (B.11)

ρ∗vs(T
∗
a ) = ρref∗

vs (T ref∗) exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ −
1

T ∗
a

)]
(B.12)

Note that the steady air flow equation is here written using the Laplacien symbol to shorten the equations length
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CALONNE ET AL.: HEAT AND MASS TRANSFER WITH CONVECTION X - 3

Fluid flow

Introducing asymptotic expansions for v∗
a and p∗a in the relations (B.1) gives at the

lowest order ε−1:

grady∗ p
∗(0)
a = 0 in Ωa (B.13)

where the unknown p
∗(0)
a (x∗,y∗) is y∗-periodic. It can be shown [Auriault et al., 2009]

that this relation implies that:

p∗(0)
a = p∗(0)

a (x∗). (B.14)

At the first order, the pressure is independent of the microscopic dimensionless variable

y∗, i.e. constant over a period or REV. Taking into account these results, equations (B.1,

B.2, B.7, B.6) of order ε0 give the following second-order problem:

µ∗
a∆y∗va

∗(0) − grady∗ p
∗(1)
a − gradx∗ p

∗(0)
a = 0 in Ωa (B.15)

divy∗ va
∗(0) = 0 in Ωa (B.16)

va
∗(0) · tΓ = 0 on Γ (B.17)

va
∗(0) · nΓ = 0 on Γ (B.18)

where v
∗(1)
a (x∗,y∗) and p

∗(1)
a (x∗,y∗) are the y∗-periodic unknowns, which represent re-

spectively the fluid velocity and the pressure fluctuation in a REV induced by a given

macroscopic gradient of pressure gradx∗p
∗(0)
a . It can be shown that va

∗(0) and p
∗(1)
a are

linear functions of gradx∗p
∗(0)
a , and that p

∗(1)
a is expressed modulo an arbitrary function

p̃
∗(1)
a (x∗) [Auriault et al., 2009]:

p∗(1)
a (x∗,y∗) = b∗(y∗) · gradx∗p

∗(0)
a + p̃∗(1)

a (x∗) (B.19)

v∗(0)
a (x∗,y∗) = k∗(y∗) · gradx∗p

∗(0)
a (B.20)
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X - 4 CALONNE ET AL.: HEAT AND MASS TRANSFER WITH CONVECTION

where k∗(y∗) is a second order tensor and b∗(y∗) is a y∗-periodic vector and average

zero over the REV, 〈b∗〉 = 0. This latter condition ensures the uniqueness of b∗. b∗

characterizes the fluctuation of pressure at the pore scale induced by the macroscopic

gradient. Introducing (B.19) and (B.20) in the set (B.15)-(B.17), the tensor k∗(y∗) and

vector b∗(y∗) are solution of the following boundary value problem in a compact form:

µ∗
a∆y∗k

∗ − grady∗ b∗ − I = 0 in Ωa (B.21)

grady∗ k∗ = 0 in Ωa (B.22)

k∗ = 0 on Γ (B.23)

At the next order, equations (B.2, B.7, B.6) are written:

divx∗ va
∗(0) + divy∗ va

∗(1) = 0 in Ωa (B.24)

va
∗(1) · tΓ = 0 on Γ (B.25)

ρ∗ava
∗(1) · nΓ = −ρ∗iw∗(0) · nΓ on Γ (B.26)

where the unknown v
∗(1)
a (x∗,y∗) is y∗-periodic. Integrating equation (B.24) over Ωa and

then using the divergence theorem, boundary condition (B.26) and the periodicity condi-

tion, the dimensionless macroscopic mass balance takes the form

divx∗(〈v∗(0)
a 〉) +

(
1− ρ∗i

ρ∗a

)
SSAV w∗(0)

n = 0 (B.27)

where

〈v∗(0)
a 〉 = −Keff∗

µ∗
a

gradx∗ p
∗(0)
a (B.28)

Keff∗ =
1

|Ω|

∫
Ωa

k d Ω. (B.29)
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CALONNE ET AL.: HEAT AND MASS TRANSFER WITH CONVECTION X - 5

and w
∗(0)
n (x∗,y∗, t) is the normal interface velocity at the zero order due to the phase

change given by the Hertz-Knudsen equation (B.67) and the Clausius Clapeyron’s law

(B.66).

Heat transfer

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (B.3, B.4, B.8, B.9)

gives at the lowest order ε0:

divy∗(κ∗igrady∗T
∗(0)
i ) = 0 in Ωi (B.30)

divy∗(κ∗agrady∗T
∗(0)
a ) = 0 in Ωa (B.31)

T
∗(0)
i = T ∗(0)

a on Γ (B.32)

(κ∗igrady∗T
∗(0)
i − κ∗agrady∗T

∗(0)
a ) · nΓ = 0 on Γ (B.33)

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. It can be shown

[Auriault et al., 2009] that the obvious solution of the above boundary value problem is

given by:

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t). (B.34)

At the first order, the temperature is independent of the microscopic dimensionless vari-

able y∗, i.e. we have only one temperature field. Taking into account these results,

equations (B.3, B.4, B.8, B.9) of order ε give the following second-order problem:

divy∗(κ∗i (grady∗T
∗(1)
i + gradx∗T

∗(0))) = 0 in Ωi (B.35)

divy∗(κ∗a(grady∗T
∗(1)
a + gradx∗T

∗(0))) = 0 in Ωa (B.36)

T
∗(1)
i = T ∗(1)

a on Γ (B.37)

(κ∗i (grady∗T
∗(1)
i + gradx∗T

∗(0))− κ∗a(grady∗T
∗(1)
a + gradx∗T

∗(0))) · nΓ = 0 on Γ (B.38)

D R A F T November 25, 2015, 10:28am D R A F T



X - 6 CALONNE ET AL.: HEAT AND MASS TRANSFER WITH CONVECTION

where the unknowns T
∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic

gradient gradx∗T
∗(0) is given. The solution of the above boundary value problem appears

as a linear function of the macroscopic gradient, modulo an arbitrary function T̃ ∗(1)(x∗, t)

[Auriault et al., 2009]:

T
∗(1)
i (x∗,y∗, t) = t∗i (y

∗) · gradx∗T
∗(0) + T̃

∗(1)
i (B.39)

T ∗(1)
a (x∗,y∗, t) = t∗a(y

∗) · gradx∗T
∗(0) + T̃ ∗(1)

a (B.40)

where t∗i (y
∗) and t∗a(y

∗) are two periodic vectors which characterize the fluctuation of

temperature in both phases at the pore scale. Introducing (B.39) and (B.40) in the set

(B.35)-(B.38), these two vectors are solution of the following boundary value problem in

a compact form:

divy∗(κ∗i (grady∗t
∗
i + I)) = 0 in Ωi (B.41)

divy∗(κ∗a(grady∗t
∗
a + I)) = 0 in Ωa (B.42)

t∗i = t∗a on Γ (B.43)

(κ∗i (grady∗t
∗
i + I)− κ∗a(grady∗t

∗
a + I)) · nΓ = 0 on Γ (B.44)

1

|Ω|

∫
Ω

(t∗a + t∗i )dΩ = 0 (B.45)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the

third order problem is given by the equations (B.3, B.4, B.8, B.9) of order ε2:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
− divy∗(κ∗i (grady∗T

∗(2)
i + gradx∗T

∗(1)
i ))

−divx∗(κ∗i (grady∗T
∗(1)
i + gradx∗T

∗(0))) = 0 in Ωi (B.46)

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
+ ρ∗aC

∗
av

∗(0)
a · (gradx∗T

∗(0) + grady∗T
∗(1)
a )
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CALONNE ET AL.: HEAT AND MASS TRANSFER WITH CONVECTION X - 7

−divy∗(κ∗a(grady∗T
∗(2)
a +gradx∗T

∗(1)
a ))−divx∗(κ∗a(grady∗T

∗(1)
a +gradx∗T

∗(0))) = 0 in Ωa

(B.47)

T
∗(2)
i = T ∗(2)

a on Γ (B.48)

(κ∗i (grady∗T
∗(2)
i + gradx∗T

∗(1)
i )− κ∗a(grady∗T

∗(2)
a + gradx∗T

∗(1)
a )) · nΓ = L∗

sgw
∗(0)
n on Γ

(B.49)

where the unknowns T
∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic, v

∗(0)
a (x∗,y∗, t) is

given by the equation (B.20) and verifies the relations (B.16) – (B.18), and w
∗(0)
n (x∗,y∗, t)

is the normal interface velocity at the zero order due to the phase change given by the

Hertz-Knudsen (B.67) and the Clausius Clapeyron’s law (B.66). Consequently, integrating

(B.46) over Ωi and (B.47) over Ωa, and then using the divergence theorem, the period-

icity condition, and the boundary conditions (B.49) lead to the first order dimensionless

macroscopic description for the heat transfer:

(ρC)eff∗∂T
∗(0)

∂t∗
+ρ∗aC

∗
a〈v∗(0)

a 〉 · gradx∗T
∗(0) − divx∗(keff∗gradx∗ T

∗(0)) = SSAVL
∗
sgw

∗(0)
n

(B.50)

where SSAV = |Γ|/|Ω| is the specific surface area, (ρC)eff∗ and keff∗ are the dimension-

less effective thermal capacity and the effective dimensionless conductivity respectively,

defined as:

(ρC)eff∗ = (1− φ)ρ∗iC
∗
i + φρ∗aC

∗
a (B.51)

keff∗ =
1

|Ω|

(∫
Ωa

κ∗a(grady∗t
∗
a(y

∗) + I)dΩ +

∫
Ωi

κ∗i (grady∗t
∗
i (y

∗) + I)dΩ

)
(B.52)

where φ is the porosity.

Water vapor transfer
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X - 8 CALONNE ET AL.: HEAT AND MASS TRANSFER WITH CONVECTION

Introducing asymptotic expansions for ρ∗v in the relations (B.5, B.10) gives at the lowest

order (ε0)

divy∗(D∗
vgrady∗ρ

∗(0)
v ) = 0 in Ωa (B.53)

D∗
vgrady∗ρ

∗(0)
v · nΓ = 0 on Γ. (B.54)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. It can be shown [Auriault et al., 2009]

that the solution of the above boundary value problem is given by:

ρ∗(0)
v = ρ∗(0)

v (x∗, t). (B.55)

At the first order, the water vapor density is independent of the microscopic dimensionless

variable y∗. Taking into account these results, the second-order problem is given by the

equations (B.5, B.10) of order ε:

divy∗(D∗
v(grady∗ρ

∗(1)
v + gradx∗ρ

∗(0)
v )) = 0 in Ωa (B.56)

D∗
v(grady∗ρ

∗(1)
v + gradx∗ρ

∗(0)
v ) · nΓ = 0 on Γ. (B.57)

where the unknown ρ
∗(1)
v (x∗,y∗, t) is y∗-periodic and the macroscopic gradient gradx∗ρ

∗(0)
v

is given. The solution of the above boundary value problem appears as a linear function of

the macroscopic gradient, modulo an arbitrary function ρ̃
∗(1)
v (x∗, t) [Auriault et al., 2009]:

ρ∗(1)
v (x∗,y∗, t) = g∗

v(y
∗) · gradx∗ρ

∗(0)
v + ρ̃∗(1)

v (x∗, t) (B.58)

where g∗
v(y

∗) is a periodic vector which characterizes the fluctuation of water vapor density

in the air phase at the pore scale. Introducing (B.58) in the set (B.56)-(B.57), this vector

is solution of the following boundary value problem in a compact form:

divy∗(D∗
v(grady∗g

∗
v + I)) = 0 in Ωa (B.59)

D∗
v(grady∗g

∗
v + I) · nΓ = 0 on Γ (B.60)
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1

|Ω|

∫
Ωa

g∗
vdΩ = 0 (B.61)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the

third order problem is given by the equations (B.5, B.10) of order ε2:

∂ρ
∗(0)
v

∂t∗
+ v∗(0)

a · (gradx∗ρ
∗(0)
v + grady∗ρ

∗(1)
v )− divy∗(D∗

v(grady∗ρ
∗(2)
v + gradx∗ρ

∗(2)
v ))

−divx∗(D∗
v(grady∗ρ

∗(1)
v + gradx∗ρ

∗(1)
v )) = 0 in Ωi (B.62)

D∗
v(grady∗ρ

∗(2)
v + gradx∗ρ

∗(2)
v ) · nΓ = ρ∗iw

∗(0)
n on Γ (B.63)

where the unknown ρ
∗(2)
v (x∗,y∗, t) is y∗-periodic, v

∗(0)
a (x∗,y∗, t) is given by the equation

(B.20) (and verifies the relations (B.16) and (B.18)) and and w
∗(0)
n (x∗,y∗, t) is the normal

interface velocity due to the phase change at the zero order given by the Hertz-Knudsen

equation (B.67) and the Clausius Clapeyron’s law (B.66). Integrating (B.62) over Ωa, and

then using the divergence theorem, the periodicity condition, and the boundary conditions

(B.63) lead to the first order dimensionless macroscopic description for the water vapor

transfer:

φ
∂ρ

∗(0)
v

∂t
+〈v∗(0)

a 〉 · gradx∗ρ
∗(0)
v − divx∗(D∗effgradx∗ρ

∗(0)
v ) = −SSAV ρ

∗
iw

∗(0)
n (B.64)

where SSAV = |Γ|/|Ω| is the surface area and D∗eff is the dimensionless effective diffusion

tensor defined as:

Deff∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ g∗

v(y
∗) + I)dΩ (B.65)

Expression of w∗(0)
n

The asymptotic analysis for the the Clausius Clapeyron’s law and the Hertz-Knudsen

equation are presented in Calonne et al. [2014]. They obtained

ρ∗(0)
vs (T ∗(0)) = ρref∗

vs (T ref∗) exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ −
1

T ∗(0)

)]
(B.66)
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w∗(0)
n =

1

β∗

[
ρ
∗(0)
v − ρ∗(0)

vs (T ∗(0))

ρ
∗(0)
vs (T ∗(0))

− d∗0K∗

]
(B.67)

The relations (B.67) and (B.66) show that the normal velocity w
∗(0)
n arising in the bound-

ary conditions (B.49) and (B.63) does not depend on y∗.
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Appendix: Asymptotic analysis - Case C1

Taking into account the order of magnitude of the dimensionless numbers in the Case

C1,
[
FT

i

]
= O

([
FT

a

])
= O ([Fρa]) = O(ε), [Re] = O

([
PeT

])
= O ([Peρ]) = O (1), [Q] =

O (ε−1), [N] = O (ε−1), [M] = O (ε3), [K] = O (1) , [H] = O (ε2) , [W] = O (ε2), the

dimensionless microscopic description (Equations (13)-(22)) becomes:

ρ∗ava
∗ · grad∗ va

∗ = µ∗
a∆

∗va
∗ − ε−1grad∗ p∗a in Ωa (C.1)

div∗ va
∗ = 0 in Ωa (C.2)

ε2ρ∗iC
∗
i

∂T ∗
i

∂t∗
− div∗(κ∗igrad∗T ∗

i ) = 0 in Ωi (C.3)

ε2ρ∗aC
∗
a

∂T ∗
a

∂t∗
+ ρ∗aC

∗
ava

∗ · grad∗ T ∗
a − div∗(κ∗agrad∗T ∗

a ) = 0 in Ωa (C.4)

ε2∂ρ
∗
v

∂t∗
+ va

∗ · grad∗ ρ∗v − div∗(D∗
vgrad∗ρ∗v) = 0 in Ωa (C.5)

ρ∗a(ε
2w∗ − va

∗) · nΓ = −ερ∗iw∗ · nΓ on Γ (C.6)

va
∗ · tΓ = 0 on Γ (C.7)

T ∗
i = T ∗

a on Γ (C.8)

κ∗igrad∗T ∗
i · nΓ − κ∗agrad∗T ∗

a · nΓ = ε2L∗
sgw

∗ · nΓ on Γ (C.9)

D∗
vgrad∗ρ∗v · nΓ = ε2ρ∗iw

∗ · nΓ on Γ. (C.10)

This set of equations is completed by the Hertz-Knudsen equation and the Clausius

Clapeyron’s law, Eq. (11) and (12), expressed in dimensionless form as:

w∗
n = w∗ · nΓ =

1

β∗

[
ρ∗v − ρ∗vs(T ∗

a )

ρ∗vs(T
∗
a )

− d∗0K∗
]

on Γ (C.11)

ρ∗vs(T
∗
a ) = ρref∗

vs (T ref∗) exp

[
L∗
sgm

∗

ρ∗i k
∗

(
1

T ref∗ −
1

T ∗
a

)]
(C.12)

Here again, note that the steady air flow equation is written using the Laplacien symbol to shorten the equations length
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Fluid flow

As in the case B1, introducing asymptotic expansions for v∗
a and p∗a in the relations

(C.1) gives at the lowest order ε−1:

grady∗ p
∗(0)
a = 0 in Ωa, (C.13)

where the unknown p
∗(0)
a (x∗,y∗) is y∗-periodic. It can be shown [Auriault et al., 2009]

that this relation implies that:

p∗(0)
a = p∗(0)

a (x∗). (C.14)

At the first order, the pressure is independent of the microscopic dimensionless variable

y∗, i.e. constant over a period or REV. Taking into account these results, equations (C.1,

C.2, C.7, C.6) of order ε0 give now the following second-order problem:

µ∗
a∆y∗va

∗(0) − grady∗ p
∗(1)
a − gradx∗ p

∗(0)
a = ρ∗ava

∗(0) grad∗
y∗ va

∗(0) in Ωa (C.15)

divy∗ va
∗(0) = 0 in Ωa (C.16)

va
∗(0) · tΓ = 0 on Γ (C.17)

va
∗(0) · nΓ = 0 on Γ (C.18)

where v
∗(1)
a (x∗,y∗) and p

∗(1)
a (x∗,y∗) are the y∗-periodic unknowns. By contrast to the

Case B1, the equation (C.15) is strongly nonlinear. Consequently, va
∗(0) appears as a

nonlinear function f of the macroscopic pressure gradient gradx∗p
∗(0)
a , of y∗ and of the

fluid properties (ρ∗a µ
∗
a), (see [Auriault et al., 2009] and references herein for more details):

v∗(0)
a (x∗,y∗) = −f(gradx∗p

∗(0)
a ,y∗, ρ∗a, µ

∗
a) (C.19)

A similar relation stands for the pressure p
∗(1)
a (x∗,y∗). At the next order, equations (C.2,

C.7, C.6) are written:

divx∗ va
∗(0) + divy∗ va

∗(1) = 0 in Ωa (C.20)
D R A F T November 25, 2015, 10:28am D R A F T
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va
∗(1) · tΓ = 0 on Γ (C.21)

va
∗(1) · nΓ = 0 on Γ (C.22)

where the unknown v
∗(1)
a (x∗,y∗) is y∗-periodic. Let us remark that the equation (C.22)

does not present a left term as in the case B1, since now [M] = O (ε3). As in the

Case B1, integrating equation (C.20) over Ωa and then using the divergence theorem,

boundary condition (C.22) and the periodicity condition, the dimensionless macroscopic

mass balance takes the form

divx∗(〈v∗(0)
a 〉) = 0 (C.23)

where the dimensionless macroscopic flow law is written:

〈v∗(0)
a 〉 = − 1

|Ω|

∫
Ωa

f(gradx∗p
∗(0)
a ,y∗, ρ∗a, µ

∗
a), dΩ = −F(gradx∗p

∗(0)
a ,microstructure, ρ∗a, µ

∗
a)

(C.24)

Heat transfer

Introducing asymptotic expansions for T ∗
i and T ∗

a in the relations (C.3, C.4, C.8, C.9)

gives at the lowest order ε0:

divy∗(κ∗igrady∗T
∗(0)
i ) = 0 in Ωi (C.25)

ρ∗aC
∗
av

∗(0)
a · grady∗T

∗(0) − divy∗(κ∗agrady∗T
∗(0)
a ) = 0 in Ωa (C.26)

T
∗(0)
i = T ∗(0)

a on Γ (C.27)

(κ∗igrady∗T
∗(0)
i − κ∗agrady∗T

∗(0)
a ) · nΓ = 0 on Γ (C.28)

where the unknowns T
∗(0)
i (x∗,y∗, t) and T

∗(0)
a (x∗,y∗, t) are y∗-periodic. It can be shown

[Auriault et al., 2009; Geindreau and Auriault , 2001] that the solution of the above bound-

ary value problem is given by:

T
∗(0)
i = T ∗(0)

a = T ∗(0)(x∗, t). (C.29)
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At the first order, the temperature is independent of the microscopic dimensionless vari-

able y∗, i.e. we have only one temperature field. Taking into account these results,

equations (C.3, C.4, C.8, C.9), of order ε give the following second-order problem:

ρ∗iC
∗
i

∂T ∗(0)

∂t∗
− divy∗(κ∗i (grady∗T

∗(1)
i + gradx∗T

∗(0))) = 0 in Ωi (C.30)

ρ∗aC
∗
a

∂T ∗(0)

∂t∗
+ ρ∗aC

∗
av

∗(0)
a · (gradx∗T

∗(0) + grady∗T
∗(1)
a )

−divy∗(κ∗a(grady∗T
∗(1)
a + gradx∗T

∗(0))) = 0 in Ωa (C.31)

T
∗(1)
i = T ∗(1)

a on Γ (C.32)

(κ∗i (grady∗T
∗(1)
i + gradx∗T

∗(0))− κ∗a(grady∗T
∗(1)
a + gradx∗T

∗(0))) · nΓ = 0 on Γ (C.33)

where the unknowns T
∗(1)
i (x∗,y∗, t) and T

∗(1)
a (x∗,y∗, t) are y∗-periodic and the macroscopic

gradient gradx∗T
∗(0) is given. v

∗(0)
a is given by the relation (C.19). Integrating (C.30) over

Ωi and (C.31) over Ωa and taking into account the condition of periodicity, the boundary

condition (C.33) and the relation (C.19), we obtain the following first order macroscopic

description:

(ρC)eff∗∂T
∗(0)

∂t∗
+ρ∗aC

∗
a〈v∗(0)

a 〉 · gradx∗T
∗(0) = 0 (C.34)

where 〈v∗(0)
a 〉 and (ρC)eff∗ are given by the relations (C.24) and (B.51) respectively. As

expected, the convection alone is present at the first order of approximation.

The first correction of this macroscopic model will bring the diffusion into play. Using

the relation (C.34), the boundary value problem can be put in the form:

−β∗〈v∗(0)
a 〉 · gradx∗T

∗(0) − divy∗(κ∗i (grady∗T
∗(1)
i + gradx∗T

∗(0))) = 0 in Ωi (C.35)

−γ∗〈v∗(0)
a 〉 · gradx∗T

∗(0) + ρ∗aC
∗
av

∗(0)
a · (gradx∗T

∗(0) + grady∗T
∗(1)
a )

−divy∗(κ∗a(grady∗T
∗(1)
a + gradx∗T

∗(0))) = 0 in Ωa (C.36)

D R A F T November 25, 2015, 10:28am D R A F T



CALONNE ET AL.: HEAT AND MASS TRANSFER WITH CONVECTION X - 15

T
∗(1)
i = T ∗(1)

a on Γ (C.37)

(κ∗i (grady∗T
∗(1)
i + gradx∗T

∗(0))− κ∗a(grady∗T
∗(1)
a + gradx∗T

∗(0))) · nΓ = 0 on Γ (C.38)

where β∗ = (ρ∗aC
∗
a)(ρ∗iC

∗
i )/(ρC)eff∗ and γ∗ = (ρ∗aC

∗
a)2/(ρC)eff∗. Consequently, the solution

of the above boundary value problem (C.35)-(C.38) appears as a linear function of the

macroscopic gradient of temperature, modulo an arbitrary function T̃ ∗(1)(x∗, t) [Auriault

et al., 2009; Geindreau and Auriault , 2001], and is written:

T
∗(1)
i (x∗,y∗, t) = m∗

i (y
∗,gradx∗p

∗(0)
a ) · gradx∗T

∗(0) + T̃
∗(1)
i (C.39)

T ∗(1)
a (x∗,y∗, t) = m∗

a(y
∗,gradx∗p

∗(0)
a ) · gradx∗T

∗(0) + T̃ ∗(1)
a (C.40)

where m∗
i (y

∗,gradx∗p
∗(0)
a ) and m∗

a(y
∗,gradx∗p

∗(0)
a ) are two periodic vectors which charac-

terize the fluctuation of temperature in both phases at the pore scale. They also depend

on the velocity field at the first order and hence on the macroscopic pressure gradient

gradx∗p
∗(0)
a . Introducing (C.39) and (C.40) in the set (C.35)-(C.38), these two vectors are

solution of the following boundary value problem in a compact form:

−β〈v∗(0)
a 〉 − divy∗(κ∗i (grady∗m

∗
i + I)) = 0 in Ωi (C.41)

−γ〈v∗(0)
a 〉+ ρ∗aC

∗
av

∗(0)
a · (grady∗m

∗
a + I)− divy∗(κ∗a(grady∗m

∗
a + I)) = 0 in Ωa (C.42)

m∗
i = m∗

a on Γ (C.43)

(κ∗i (grady∗m
∗
i + I)− κ∗a(grady∗m

∗
a + I)) · nΓ = 0 on Γ (C.44)

1

|Ω|

∫
Ω

(m∗
a + m∗

i )dΩ = 0 (C.45)

This latter equation is introduced to ensure the uniqueness of the solution. Finally, the

third order problem is given by the equations (C.3, C.4, C.8, C.9) of order ε2:

ρ∗iC
∗
i

∂T ∗(1)

∂t∗
− divy∗(κ∗i (grady∗T

∗(2)
i + gradx∗T

∗(1)
i ))
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−divx∗(κ∗i (grady∗T
∗(1)
i + gradx∗T

∗(0))) = 0 in Ωi (C.46)

ρ∗aC
∗
a

∂T ∗(1)

∂t∗
+ρ∗aC

∗
av

∗(0)
a ·(grady∗T

∗(2)+gradx∗T
∗(1))+ρ∗aC

∗
av

∗(1)
a ·(grady∗T

∗(1)+gradx∗T
∗(0))

−divy∗(κ∗a(grady∗T
∗(2)
a +gradx∗T

∗(1)
a ))−divx∗(κ∗a(grady∗T

∗(1)
a +gradx∗T

∗(0))) = 0 in Ωa

(C.47)

T
∗(2)
i = T ∗(2)

a on Γ (C.48)

(κ∗i (grady∗T
∗(2)
i + gradx∗T

∗(1)
i )− κ∗a(grady∗T

∗(2)
a + gradx∗T

∗(1)
a )) · nΓ = L∗

sgw
∗(0)
n on Γ

(C.49)

where the unknowns T
∗(2)
i (x∗,y∗, t) and T

∗(2)
a (x∗,y∗, t) are y∗-periodic. The fluid veloc-

ity v
∗(0)
a (x∗,y∗, t) is given by the equation (C.19) (and verifies the relation (C.16)) and

v
∗(1)
a (x∗,y∗, t) verifies the relations (C.21) and (C.22). Finally, w

∗(0)
n (x∗,y∗, t) is the normal

interface velocity due to the phase change at the zero order given by the Hertz-Knudsen

equation (B.67) and the Clausius Clapeyron’s law (B.66). Integrating (C.46) over Ωi and

(C.47) over Ωa, and then using the divergence theorem, the periodicity condition, and the

boundary conditions (C.49) lead to the first order correction:

(ρC)eff∗∂T
∗(1)

∂t∗
+ ρ∗aC

∗
a〈v∗(0)

a 〉 · gradx∗T̃
∗(1)
i + ρ∗aC

∗
a〈v∗(1)

a 〉 · gradx∗T
∗(0)
i

−divx∗(kdisp∗gradx∗ T
∗(0)) = SSAVL

∗
sgw

∗(0)
n (C.50)

where kdips∗ is the effective thermal dispersion tensor respectively, defined as:

kdisp∗ =
1

|Ω|

(∫
Ωa

κ∗a(grady∗m
∗
a(y

∗) + I) + v∗(0)
a ⊗m∗

adΩ +

∫
Ωi

κ∗i (grady∗m
∗
i (y

∗) + I)d Ω

)
(C.51)

Finally, we can define:

〈T ∗〉 = T ∗(0) + εT̃ ∗(1), 〈v∗
a〉 = 〈v∗(0)

a 〉+ ε〈v∗(1)
a 〉 (C.52)
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where 〈·〉 represents the mean over the REV. Thus, adding equations (C.34) and (C.50)

multiplied by ε, we get the following dimensionless macroscopic description at the second

order of approximation:

(ρC)eff∗∂〈T ∗〉
∂t∗

+ρ∗aC
∗
a〈v∗

a〉·gradx∗〈T ∗〉−divx∗(εkdisp∗gradx∗〈T ∗〉) = SSAVL
∗
sgw

∗(0)
n (C.53)

Water vapor transfer

Introducing asymptotic expansions for ρ∗v in the relations (C.5, C.10) give at the lowest

order (ε0)

v∗(0)
a · grady∗ρ

∗(0)
v − divy∗(D∗

vgrady∗ρ
∗(0)
v ) = 0 in Ωa (C.54)

D∗
vgrady∗ρ

∗(0)
v · nΓ = 0 on Γ. (C.55)

where the unknown ρ
∗(0)
v (x∗,y∗, t) is y∗-periodic. It can be shown [Auriault et al., 2009]

that the solution of the above boundary value problem is given by:

ρ∗(0)
v = ρ∗(0)

v (x∗, t). (C.56)

At the first order, the water vapor density is independent of the microscopic dimensionless

variable y∗. Taking into account these results, the second-order problem is given by the

equations (C.5, C.10) of order ε:

∂ρ
∗(0)
v

∂t∗
+v∗(0)

a ·(grady∗ρ
∗(1)
v +gradx∗ρ

∗(0)
v )−divy∗(D∗

v(grady∗ρ
∗(1)
v +gradx∗ρ

∗(0)
v )) = 0 in Ωa

(C.57)

D∗
v(grady∗ρ

∗(1)
v + gradx∗ρ

∗(0)
v ) · nΓ = 0 on Γ. (C.58)

where the unknown ρ
∗(1)
v (x∗,y∗, t) is y∗-periodic and the macroscopic gradient gradx∗ρ

∗(0)
v

is given. v
∗(0)
a is given by the relation (C.19) (and verifies the relations (C.16) and (C.18)).

Integrating (C.57) over Ωa and taking into account the condition of periodicity, the bound-
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ary condition (C.58) and the relation (C.19), we obtain the following first order macro-

scopic description:

φ
∂ρ

∗(0)
v

∂t∗
+ 〈v∗(0)

a 〉 · gradx∗ρ
∗(0)
v = 0 (C.59)

where 〈v∗(0)
a 〉 is given by the relation (C.24).

As for the temperature, the convection alone is present at the first order of approxima-

tion. Using the relation (C.59), the boundary value problem (C.57)-(C.58) is written:

−φ−1〈v∗(0)
a 〉 · gradx∗ρ

∗(0)
v + v∗(0)

a · (grady∗ρ
∗(1)
v + gradx∗ρ

∗(0)
v )

−divy∗(D∗
v(grady∗ρ

∗(1)
v + gradx∗ρ

∗(0)
v )) = 0 in Ωa (C.60)

D∗
v(grady∗ρ

∗(1)
v + gradx∗ρ

∗(0)
v ) · nΓ = 0 on Γ. (C.61)

The solution of the above boundary value problem appears as a linear function of the

macroscopic gradient of the water vapor, modulo an arbitrary function ρ̃
∗(1)
v (x∗, t) [Auri-

ault et al., 2009]:

ρ∗(1)
v (x∗,y∗, t) = h∗

v(y
∗,gradx∗p

∗(0)
a ) · gradx∗ρ

∗(0)
v + ρ̃∗(1)

v (x∗, t) (C.62)

where h∗
v(y

∗,gradx∗p
∗(0)
a ) is a periodic vector which characterizes the fluctuation of water

vapor density in the air phase at the pore scale which depends on the intensity of the

flow and thus on gradx∗p
∗(0)
a . Introducing (C.62) in the set (C.60)-(C.61), this vector is

solution of the following boundary value problem in a compact form:

−φ−1〈v∗(0)
a 〉+ v∗(0)

a + v∗(0)
a · grady∗h

∗
v − divy∗(D∗

v(grady∗h
∗
v + I)) = 0 in Ωa (C.63)

D∗
v(grady∗h

∗
v + I) · nΓ = 0 on Γ (C.64)

1

|Ω|

∫
Ωa

h∗
vdΩ = 0 (C.65)
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This latter equation is introduced to ensure the uniqueness of the solution. Finally, the

third order problem is given by the equations (C.5, C.10) of order ε2:

∂ρ
∗(1)
v

∂t∗
+ v∗(0)

a · (grady∗ρ
∗(2)
v + gradx∗ρ

∗(1)
v ) + v∗(1)

a · (grady∗ρ
∗(1)
v + gradx∗ρ

∗(0)
v )

−divy∗(D∗
v(grady∗ρ

∗(2)
v + gradx∗ρ

∗(1)
v ))−divx∗(D∗

v(grady∗ρ
∗(1)
v + gradx∗ρ

∗(0)
v )) = 0 in Ωa

(C.66)

D∗
v(grady∗ρ

∗(2)
v + gradx∗ρ

∗(1)
v ) · nΓ = ρ∗iw

∗(0)
n on Γ (C.67)

where the unknown ρ
∗(2)
v (x∗,y∗, t) is y∗-periodic. The fluid velocity v

∗(0)
a (x∗,y∗, t) is given

by the equation (C.19) (and verifies the relation (C.16)) and v
∗(1)
a (x∗,y∗, t) verifies the

relations (C.21) and (C.22). Finally, w
∗(0)
n (x∗,y∗, t) is the normal interface velocity due

to the phase change at the zero order given by the Hertz-Knudsen equation (B.67) and

the Clausius Clapeyron’s law (B.66). Integrating (C.66) over Ωa, and then using the

divergence theorem, the periodicity condition, and the boundary conditions (C.67) lead

to the first order correction:

φ
∂ρ

∗(1)
v

∂t
+ 〈v∗(0)

a 〉 · gradx∗ ρ̃
∗(1)
v + 〈v∗(1)

a 〉 · gradx∗ρ
∗(0)
v

−divx∗(Ddisp∗gradx∗ρ
∗(0)
v ) = −SSAV ρ

∗
iw

∗(0)
n (C.68)

where SSAV = |Γ|/|Ω| is the surface area and Ddisp∗ is the dimensionless effective disper-

sion tensor for the water vapor defined as:

Ddisp∗ =
1

|Ω|

∫
Ωa

D∗
v(grady∗ h∗

v(y
∗) + I) + v∗(0)

a ⊗ h∗
vdΩ (C.69)

Finally, we can define:

〈ρ∗v〉a = ρ∗(0)
v + ερ̃∗(1)

v , 〈v∗
a〉 = 〈v∗(0)

a 〉+ ε〈v∗(1)
a 〉 (C.70)

D R A F T November 25, 2015, 10:28am D R A F T



X - 20 CALONNE ET AL.: HEAT AND MASS TRANSFER WITH CONVECTION

where 〈·〉a and 〈·〉 represent the mean over the air phase and over the REV respectively.

Thus, adding equations (C.59) and (C.68) multiplied by ε, we get the following dimen-

sionless macroscopic description at the second order of approximation:

φ
∂〈ρ∗v〉a
∂t

+ 〈v∗
a〉 · gradx∗〈ρ∗v〉a − divx∗(εDdisp∗gradx∗〈ρ∗v〉a) = −SSAV ρ

∗
iw

∗(0)
n (C.71)
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