Eur. Phys. J. AP 7, 45-57 (1999)

THE EUROPEAN
PHYSICAL JOURNAL

APPLIED PHYSICS
(© EDP Sciences 1999

Computation of 3D curvatures on a wet snow sample

J.B. Brzoska®#, B. Lesaffre!:", C. Coléou’¢, K. Xu?'“?, and R.A. Pieritz>°

I Météo-France, CNRM/Centre d’Etudes de la Neige, 1441 rue de la Piscine, 38406 St Martin d’Heres, France
* Laboratoire de Physique des phenomenes de ‘Transport et de Melange, Bd3, Teléport2, B.P. 79, 86960 Futuroscope, France
* Laboratoire d’Etudes des Transferts en Hydrologie et Environnement, B.P. 53, 38041 Grenoble Cedex 9, France

Received: 8 October 1998 / Revised: 15 April 1999

Abstract. The map of 3D curvatures of a porous medium characterizes most of its capillary properties. A
model for directly computing curvatures from a three-dimensional image of the solid matrix of a porous
medium is presented. A precise distance map of the object is built using the “chamfer” distance of discrete
geometry. The set of local maxima of the distance map is used for quick location of the normal to each
point P of the object’s surface. The normal being known, principal radii of curvature are computed in
2D and lead to 3D curvature. This model was validated on geometric shapes of known curvature, then
applied on a natural snow sample. The snow image was obtained from a serial cut (performed in cold
laboratory) observed under specularly reflected light. Views of both fresh and sublimated sections were
taken for each of the 64 section planes: this allowed easier distinction between snow and filling medium
and made possible automatic contouring of section plane images. Curvature maps computed from pore and
grain phases respectively were found to be in excellent agreement for each tested object shape, including

the snow sample.

PACS. 92.40.Rm Snow — 07.05.Pj Image processing — 61.43.Gt Powders, porous materials

Introduction

Capillarity in a porous medium is governed by the 3D
map of solid matrix curvatures {1|. Curvature is a fully
three-dimensional parameter, difficult to derive from 2D
data such as section planes. Its computation requires a
fine description of the grain’s shape i.e. high resolution
3D imaging.

Curvature hag long been recognized as a central pa-
rameter in snow microphysics [2]. Its importance derives
from the tact that the pore size distribution of snow clus-
ters in the capillary range (0.1- 1 mum). The structure of
snow evolves with temperature and humidity fields; the
effect of the presence of liquid water is specially strong
when the temperature reaches 0 °C. Except at the high
sublimation rates leading to faceted shapes, these struc-
ture modifications are governed by local curvature.

Until recently, only the 2D local curvature of grains
could be used. This gave valuable information on grain
types for modeling snow metamorphism but could not,
for instance, correctly account for water percolation. This
paper presents a numerical method for modeling 3D local
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curvatures, followed by an original experimental validation
On SNOW.

The principle of the model is first to compute a “skele-
ton” of the 3D image of the sample (image processing
technique); these skeleton data are then used to locate the
normal vector n at any point of the grain phase edge. The
knowledge of n allows the derivation of principal planes
(and radii R; and Rs) of curvature in 2D, and then 3D
local curvature C = (1/2)(1/R; + 1/R5). After a descrip-
tion of the fast algorithm used to compute this skeleton,
the procedure of 2D computation 1s presented.

The next section deals with the details of experimen-
tal 3D file generation. The experiment which aimed at
providing a set of serial section planes of snow is first pre-
sented. The image processing used to obtain an isotropic
3D binary data file is then thoroughly described. The last
section presents validations of the model. Using digitized
geometrical shapes whose curvature map 1s analytically
known, allowed first debugging, then numerical and dig-
itization errors to be assessed. Results on data from the
wet snow sampile are then presented and compared to stan-
dard 2D computations on grain outlines, showing the good
agreement of these two approaches.

Finally, the problem of resolution vs. field size is sum-
marized: our choice of parameters seems to be adapted to
wet snow, but will have to be considered again for other
snows or materials. Outlook and conclusions of this work
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Fig. 1. Left — principal radii of curvature Ry and Ra: C = (1/2){(1/R1 + 1/R2); Il and I/s: principal planes; €7 and Ch:
curvature centers; P: current pomt: 3.: surface of the 3D object O; n: normal vector; 111 is orthogonal to [l»; I[; and [l, both
contain n. Right — location of n using the skeleton (medial axis) 5; M;: current point of the skeleton; D¢: background (chamfer)
distance associated to Af;; the sphere of center A, and radius Dy meets 2 at a point F so that PM,; is colinear to n.

stress “remote” 3D imaging techniques which we consider
to be the [uture for snow microstructure studies.

-

1 Model

1.1 Geometrical fundamentals of the model

Three-dimensional (local) curvature ' can be obtained on
every point P of the surface ) of an object O from the
principal radii of curvature p; and po (mathematically the
largest and the smallest one) at P

1 /1 1
c_( } )
2 \ p1 P2

Practicallv, any couple of values £; and R for which the
curvature planes I, and fI; are orthogonal with the other
and contaln the normal vector n can be used as principal
radii of curvature [3}: they fulfill indeed the condition C' =
(1/2)(1/ Ry + 1/Rs). This meaning of “principal radii of
curvature” will be used in the following. Whereas several
algorithms are known to compute two-dimensional radii of
curvatures [4], it is still difficult to quickly locate a normal
vector n with sufficient accuracy.

The main idea of our model is to use a medial axis
of the object to locate n easily in order to compute B;
and Ry (the concept of medial axis comes from imaging
techniques, see Serra |5)). The normal n being located, two
orthogonal planes Il and I/» containing n are computed.
The intersection of 2 with each of these planes is a plane
curve, from which the 2D radii of curvature are computed,
giving C(FP): these 2D computations use little memory
since each point is processed separately and requires only
its closest ncighbors.

A non-connected medial axis is used to locate n. It
is the set of centers of the largest spheres tangent to the
object surface X' [4]. which generally appears as a skew
surface (like ribbons) “at the middle” of O. On parts of O
whose cross-scction is circular, the medial axis is sumply a
CUrVe.

1.2 Chamfer algorithm and medial axis determination

For a given numerical object O, the backeground distance
dy, of a point P belonging to O is defined as:

V(Pec0,Q¢&Q0), dy,= min[d(ﬂ Q)!.

The map of background distances can be built using a
two-run iterative procedure 4|. The first run starts from
the corner of zero indices ot the digitized space and pro-
cesses voxels one by one towards increasing indices. When
a given voxel P is “reached” by the procedure, its low-
est discrete distance df to object’s edge voxels which were
already processed is computed as:

min

)=

}ir (N(P)] + d|P, N(P)

where N{P) denotes a given already processed (in this run,
lower indices) neighbour of P and d the distance used
in the digitized space; this value is assigned to P. This
forward run ends at the opposite space corner (maximum
mdices).

The same procedure i1s then applied backwards from
the high indices corner, toward decreasing indices, taking
into account results of the forward run: to a given voxel
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Fig. 2. Algorithin for chamfer distance ds45 computation. Left
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the two half-kernels. Note that the current point (the center

of the whole kernel) is taken into account only in the “backward” run. Right — propagation of each half-kernel across the image.
Forward run: increasing indices (¢ then j then k) from 0 to N — 1 (N is the resolution: in this study, N = 128). Backward run:

dccreasing indices (¢ then j then &) from N — 1 to 0.

P reached by the backward run is assigned the value:

di(P), min, |do[N(P)] + d[P.N(P)

h— e

dy(P) = min

di,, the minimal distance of P to edge voxels toward two
opposite directions (respectively maximum and zero in-
dices corners), is the desired background distance of P
indeed.

The discrete distance uscd in the algorithm is the so-
called “chamfer distance” dss5, equal to unitv along Eu-
clidean axes. 4/3 along the small diagonal (instead of the
Euclidean value of v/2) and 5/3 along the large diagonal
(instead of v'3). The unit ball of ds45 (shown in Fig. 3a)
fits correctly the Euclidean unit sphere in any direction
(better than within £5% in radius), which limits digitiza-
tion errors. Morcover, this distance allows to save memory
because it uses integers.

The (unconnected) medial axis has been defined as the
set of voxels whose backeground distance dy, 1s a local max-
imum with regard to ncighboring voxels:

PcSeVNc{NP), d,(P)>d,N(P).

This simple definition of a skeleton docs not preserve con-
nectivity, but allows the full reconstruction of the object
(within the limits of the chosen discrete distance): any
voxel of the object’s surface can be related to a voxel of S
and its curvature can then be computed.

1.3 From medial axis to curvatures

Bv construction, Mg being a point of the medial axis S
and dy, (M g) the background distance of Mg (alrcady com-
puted), the interscction between the edge X of the object
(O and the sphere of center Mg and radius dy,(Mg) is a set
of points { P(Mg)} so that for each P{Mg), P(Mg)My is
theoretically parallel to n.

Numerically, many points of 2 can be found each be-
mg related to several points Mg of S - not always close

together, whereas some other points of 2’ remain “un-
touched” by points of 5. This can lead to missing points
(if n is undefined. ' cannot be computed), and also to
wrong values of €' for the points of 2/ reached by spheres
from several points of S (they are many). This is due to
digitization and to the fact that whercas the coordinates
of the voxels of O are naturally Euclidean (and cannot
easily be anything clse), the chamfer distance is not (the
unit ball for ds4z is not a Euclidean sphere, see Fig. 3a).

To optimize the location of n, the closest voxel of S
(with rcgard to the chamfer distance) is related to the
current voxel of X, for cach voxel of X (this “optimal”
procedure requires a long CPU time). A list containing the
coordinates of each voxel ¢ of 2/, 1ts associated unique
voxel Alg of S, and then the corresponding distance dy, is
provided.

n being known for each voxel ot X, principal planes 11,
and I//5 can then be computed; they must be orthogonal
together and contain n. The first one is arbitrarily cho-
sen to contain one of the three axes of coordinates. Then
the intersection of each of these planes with the digitized
object should be derived (see Fig. 3b).

The plane 1s first assigned a squarce grid with the same
size as the original cubic grid ot the 3D image. 117 and i1
arc digitized and defined in a ncighbourhood of P largc
ennough to compute correctly 2D curvatures (in our case.
a 20 x 20 pixels square centered on P, in the 2D framec of
the considered plane). Then the coordinates of the centers
of their pixels mn the original 3D frame of the image are
computed. If theyv fall inside “object” voxels of O (assigned
to 1), the corresponding pixels in the considered principal
plane are also assigned to 1 (else zero). The resulting set
of points of Il (respectively I15) is a new 2D image of the
interscction of O and I (respectively I1s). An additional
digitization error comes from the arbitrary orientation of
the 2D grids of principal planes with regard to the 3D
image cubic grid. It is comparable to the error due to the
digitization of the original 3D object.

Then radii of curvature (2D) are computed bv means
of parabolic interpolation of grain contours 8. The ac-
curacy of parabolic interpolation depends on the number
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Fig. 3. (a) Chamfer distance ds45 vs. Euclidean distance. The ball for dsss (red) overestimates the sphere size (Euclidean ball,
ercy) in the direction of first neighbors, whercas its mean radius is slightly smaller than the sphere radius. (b) From normal

vector n to 2D curvature computations: XY #Z

frame of the original 3D image, X, Y, 7, — local frame related to the current

point P (red), Y, colinear to n. .S denotes herc the point of the skeleton rclated to P. Left detail: I’Y,, Z,, contains vectors n
and X: plane 1Ty, PX, Y, contains n and is orthogonal to I/;: plane [lo. The yellow region denotes the voxels in the object
which belong to the working ncighborhood of P, W N(P). Right detail: W N(P) is defined (and drawn here) in the local frame
X, Y. Z,.. Pis drawn at its center in red. Principal radii of curvature R and [i; are actually computed on the two arcs appearing
in blue. The front part of W N(P) is drawn in grey transparency color for a complete visibility of arcs.

of neighbouring pixels on both sides of the current pixel.
If less than 4 neighbouring pixels are available, the calcu-
lation 1s not performed .

2 Experiments and image processing

Our intention was to apply the model to a 3D file of a real.
non-reconstructed porous medium. Moreover, the resolu-
tion of this data file should be high enough to account for
grain shape, bond gecometry or capillarity. We decided to
realize such a data file from a refrozen wet snow sample.

2.1 Sample preparation
Wet snow samples were prepared in our cold labora-

tory |9], in an isothermal box held at 0 °C (double walls
filled with an ice-water mixture). Natural snow (sampled

in the field, then stored at —20 “C) was sieved into the
box. Water at 0 °C was poured by the bottom of the
box (by deccanting), then removed in the same way at
the end of the soaking period. T'his ensured that each part
of a given horizontal plane of the snow block had been
in contact with water during the same time. Since wet
grain snow presents large pores, hydrostatic equilibrium
was reached in a few second and theretore, the procedure
could be assumed to be quasistatic.

Measurement samples (cores) were taken at the center
of this wet snow block; inner parts of the sample were given
an extra protection (thermal and hygrometric) by the ex-
ternal layers of this same sample. At least two adjacent
cores were taken in the same horizontal plane; they were
processed immediately. The first one was used for deter-
mination of liquid water content (LWC) by cold calorime-
try |10], the other(s) was (were) prepared for serial cut
experiments. At the same moment, a few grain clusters
were taken from the inner part of the block and dipped
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Fig. 4. Experimental device for serial cuts.

into isooctane for preservation [11|. The day after, images
of their outline (contour of their projection onto the focal
plane of the microscope) were recorded under transmitted
light. Then the histogram of 2D curvature of outlines was
computed 8] for further comparison with 3D curvatures.

2.2 Serial cuts

For this experiment, the “fresh” sample was first frozen
naturally in the cold laboratory (1 hour at —5 °C).
The frozen sample was soaked by decanting ethyl ortho-
phtalate at —4 °C (phtalate for short, m.p. —5 °C), then
the cold laboratory was set to —20 “C till the end of the
experiment. After freezing the whole (6 hours at —20 °C),
a slice 1 cm thick was sawed from the frozen core and
mounted onto a sliding blade microtome (Leica histoslide

2000).

Video views were taken through a binocular micro-
scope, straight over the section plane of the microtome
(see Fig. 4), using the specularly reflected light produced
by a coaxial lighting device (metallographic technique). At
low magnification, the microscope has a large frontal dis-
sance (more than 30 mm): we could run the blade (working
at a constant altitude in our model of microtome) without
needing to change focus. It was then possible to perform
all the serial cut regularly.

Once a section plane was made, two views were taken
successively (see Fig. 5), 3 s after cutting (snow grains
presented the characteristic “dull” surface of treshly cut
ice), and 30 s later (because of sublimation, the ice sur-
face presented a brighter surface with visible dots, whereas
phtalate surfaces remained unchanged). Such pairs of im-
ages provided a valuable “thermodynamic filtering” for
a further automatic edge detection. Neglecting undesired
sample displacements, only the aspect of the ice phase
changed from one view to another.

Efege Mot el Ty -

oA

[ S 0 -G-g_HMM;ﬁH“ .

Fig. 5. Raw images of section planes under reflected light.
Resolution 768 x 576 pixels. Pixel size: 5 um. (a} “Fresh” sec-
tion (3 s after cutting). (b) Sublimated section (30 s later, in
the cold room at T = —20 "C, Ty ~ —30 “C).

2.3 3D data file generation

64 section planes were obtained by working our exper-
imental device for ~ 2 hours in the cold laboratory at
—20 °C. Two views were taken tfrom each section plane,
which provided 2 sets of 64 images. Each image was made
of 512 x 512 pixels 5 ym wide; the vertical spacing be-
tween two successive section planes was 40 pm. For the
set of “sublimated” images, each grey-level image was
then contoured manually to produce binary images (to-
tal processing time: 2 weeks). The resolution with respect
to xy (5 pm) was much higher than with respect to z
(40 pm). Moreover, grain size (of the order of millimeter)
is large as compared to the cutting increment of 40 um.
We have therefore decided to interpolate one section plane

out of two in order to provide a binary file of 128°% voxels,
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Fig. 6. 3D immage reconstructed by manual contouring of the
64 section planes (sublimated sections). Resolution 128° voxels.
Voxel size: 20 pum.

with an 2sotropic resolution of 20 um. Each interpolated
image was obtained by applying the XOR operator to
the pair of neighbouring digitized section planes, then the
pruned 2D skeleton [5] was computed on the result of
the XOR operation. This pruned skeleton was taken as the
contour of the intermediate image. We obtained a stack of
128 binary images containing 512 x 512 pixels whose reso-
lution was dropped to 128 x 128 by assigning to each new
pixel the closest integer (0 or 1) to the average value of
the 16 previous corresponding pixels. Then the resolution
became isotropic; Figure 6 presents the result.

2.4 Image processing

The above tedious contouring procedure was mostly au-
tomated in order to provide in a few hours a binary 128
voxel data file from a series ot grey-level images ot a serial
cut. Both physical and numerical techniques were used.
The respective features of manually and automatically
contoured files will be compared later.

2.4.1 "Thermodynamic filtering”

This first stage took place in the cold laboratory, as de-
scribed above about serial cuts. Experimentally, sample
displacements between two successive views could not be
prevented. Fortunately, only translations occurred.

2.4.2 Recentering of image pairs

From a given pair of images Im1 (fresh) and Im2 (subli-
mated), Im1 was recentered with respect to Im2 (the latter
was used for manual contouring since it was most probably
taken from a really motionless and mechanically stabilized
sample). Im2 was successively translated from its original
position by increments of 1 pixel, up to 0 = 5 pixels, on
both sides of z and y axes, scanning a displacement field
of 11 x 11 pixels. For each examined position of Iml, a
difference image was built, defined by:

N—-1-0¢
Daiaj = {Imlaia(i j) —m2(i,j)f

k

1,7J=0

where Tm(i, j) denotes the grey level of the pixel of Im
whose coordinates are 7 and j, IV the resolution (here 128).
and (A7, Aj) the current displacement. Figure 7a presents
the result. The difference image D for which the sum of
orey levels of all pixels was minimal has been chosen. For
this one, the superposition of phtalate background pat-
terns was considered optimal.

2.4.3 Difference image thresholding

D was thresholded to a binary image Dy, (visual con-
trol on a few image pairs of the collection) by using
the grey-level histogram (see Fig. 7b). There remained
mainly two sorts of defects in both black (pore) and white
(grain) phases: small isolated patches and irregular paral-
lel scratches.

2.4.4 Removal of small objects

All connected patches whose size was less than S, pix-
els (this parameter was adjusted by visual control) were
removed from both phases. For our sample, S,;, was set
to 5% of image size.

2.4.5 Removing of scratches

Most scratches were connected to grain edges; they were
the visual result of sharpening defects of the microtome
blade as observed under specularly reflected light. Those
which were connected to grain edges were removed us-
ing a sort of “opening” procedure where the erosion stage
(which broke thin connections) was followed by a removal
of small objects as described above, then by a dilation
to restore the size of remaining objects. The rate of both
erosion and dilation was progressively increased until the
relative variation of the number of grain pixels between
two successive 1terations is lower than a threshold value
(5% in our case). The result is shown in Figure 7c.

The poor sharpness of our microtome blade also pro-
duced a fine-scale section unevenness which appeared un-
der reflected light as many thin scratches. The size of iso-
lated ones (not connected to grain edges) was then found
to be lower than the size threshold S,.;,. Most of them
were previously removed as “small objects”.
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C

Fig. 7. Image processing of section planes. (a) Grey-level difference image D between fresh and sublimated section plane.
b) Thresholding of D using its grey level histogram. There remains mainly irregular parallel scratches. (¢) Removal of scratches.
d) Raw 3D image, sampled at the desired resolution of 128 voxels. {e) Smoothed final 3D image.
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2.4.6 “Final cleaning”

The very few remaining defects were generally clusters of
scratches digitized as a unique wide scratch whose size
exceeded Siy;n. They were removed by hand.

2.4.7 Interpolation between experimental section planes

The average difference image (D(k)) between two succes-
sive planes k£ and £ + 1 was built: this grey-level image is

defined by

Nay—1
| D(i,j.k)+ D(i, 5,k +1) | V=
(D(k) :{ SRR

i, 7=0
k?:U

where N, , and N, denote respectively zy resolution
(512 x 512 in our case) and z resolution (here 64 section
planes). (D(k)) was then thresholded at the grey level cor-
responding to the (statistical) median value of the grey-
level histogram of (D(k)). The resulting “intermediate”
B/W image Dj. was then processed as previous “regu-
lar” images Dy, (Sects. 2.4.4-2.4.6).

The binary (B/W) 3D data file at the desired N res-
olution (here 128) could then be generated (Fig. 7d).

2.4.8 3D smoothing

The above procedure did not account for continuity along
the z axis. In particular, topological changes could not be
“anticipated” in intermediate planes. This was achieved
by applying 6 times a real-type averaging filter (kernel
1.]7 in=p) to the data, then thresholding the resulting
256 grey level image at the value 128 in order to obtain
the desired filtered B/W image. When applied to a cube,
this filter rounded the edges into chamfers 3-voxel wide.
The equivalent radius was less than 2 voxels, which is our
lower threshold value for curvature computing. This level
of smoothing was theretore consistent with our curvature
model. Figure 7e shows the final result.

3 Validation

3.1 Choice of validation methods

The behavior of our curvature model has been tested on
several objects including the experimental data file of re-
frozen wet snow. Three situations have been addressed:

e objects of known uniform curvature (sphere and zero-
curvature analytic surface);

e object that presents sharp edges inside the image
boundaries (cube):

e natural porous medium (snow sample).

For a geometric object of known curvature (like a
sphere), the numerical values of curvature were simply
compared to the analytic value. This was achieved by us-
ing the histogram of curvatures, that gave both bias and
scattering of numerical values.

For other objects (such as experimental samples), the
curvature map built from the grain medial axis (skele-
ton for short) can be compared for the same sample to
the “complementary” map built from the pore skeleton.
This validation is reliable because in 3D porous media, the
connectivity properties of grain and pore phases are not
related together. For instance, breaking a narrow bridge
between two grains does not change the ability to connect
neighboring pores. The calculations have been performed
on the same set of voxels — that is — the first layer of
grain’s phase voxels (whose background distance with re-
gard to grains is 1, 4/3 or 5/3). Therefore, the evaluation
of curvature using the grain skeleton can be considered in-
dependent of the evaluation using the pore skeleton. For
cach object, the two corresponding curvatures have been
superimposed, and the scattering graph of curvatures has
been drawn. Each dot of the scattering graph corresponds
to a given voxel of the object’s surface 2. Its curvature
value computed from the pore phase (“complementary im-
age” ) skeleton is plotted wversus the value computed from
the grain phase (“image”) skeleton. Each voxel of X for
which both values of curvature are available is represented
on the graph.

Finally, for the snow sample, the histograms of 3D and
2D curvatures (the latter on outlines of grain clusters)
were compared. For wet snow, grains assume a quasi-
spherical form: therefore, the curvature of convex parts
of outlines should be close to 3D wvalues on (convex)
erains. Naturally, visual examination of generated curva-
ture maps was a subjective but powertul means of de-
bugging and validation because it allowed the locating ot
detects on the object.

3.2 Results for geometric shapes

The model has been run on three test files, each of
1282 voxels. As discussed later, curvature was not com-
puted on voxels whose distance to image edges was less
than 8 voxels. The effectively processed volume was then
1122 voxels.

3.2.1 Sphere of radius R = 50 voxels

Owing to its complete uniformity (R = Ry = R), the
sphere was a good check of bias and scattering of nu-
merical data. From Figure 8c, the histograms of image
(“inner” skeleton: the center of the sphere) and comple-
mentary ( “outer” skeleton) merge and no bias can be seen:
the peak is at C' = 0.02 = 1/R. On the scattering graph,
the circular shape ot the dot pattern shows that:

— the spherical shape is respected: no elongation is
“seen” 1n any direction;
— point scattering is isotropic.
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Fig. 8. Results on simple gecometric shapes. (a) Fuclidean sphere of radius 50 voxels. The color scale at the bottom gives the
computed values of curvature C = (1/2)(1/R; + 1/R2) expressed in voxel '. (b} Zero-curvature analytic surface (catenoid) of
equation: \/(x — 64)2 + (y — 64)2 = 20cosh((z — 64)/20). (c¢) Curvature statistics. Histograms were computed using 1000 class.
nb. voxels in a given class

The occurrence percentage %occ plotted on the y axis is defined as - For each object, his-

nb. voxels on whole object surface
tograms built from image and complementary skeletons merge almost exactly, and peak at the analytic value of C for both

shapes. Similarly, the symmetry of dot patterns on the scattering graph suggests a good isotropy of computations.
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Examining the width of the histogram (complete half-
width 0.02 voxel '), we can sec that values lower than
0.02 voxel * are considered zero curvatures: for instance,
this corresponds to sphere radii greater than 50 voxels.
Consequently, the resolution has to be chosen so that
all significant curvatures (grain size for rounded grains.
curvature of bridges or water menisci...) are greater than
0.02 voxel 1.

3.2.2 Zero curvature surface

The program was applied to an analytic zero-curvature
surface, a catenoid (the shape assumed by a soap film
between two rings) with cquation:

2z — b4
20

Curvature histograms merge too, with a peak exactly cen-
tered at C' = 0 (sce Fig. 8c). The peak width remains sim-
tlar to the value obtained for the sphere; the same agree-
ment 1s obsecrved for the scattering graph. It should be
noted that these results are obtained “without™ the 8 first
lavers of voxels. Closer to the edges of the image, the two
histograms shift together and the dot pattern in the scat-
tering graph widens dramatically. We suppose that this
limit of 8 voxels comes from the conditions of computa-
tion of B and R5 in 2D. The longest arc that can be used
for radius calculation was sct to 17 pixels. 8 on each side
plus the current point. In the program. the edge of the
image 1s processed 111 the sanie way as the edge of the ob-
ject. Systematic errors occur even for a skeleton ending at
a normal to an image edge. For this reason, 3D curvature
was not computed on the 8 first layers of voxels.

iz —64)2 + (y — 64)2 = 20 cosh

3.2.3 Cube

For a polyhedron, curvature is zcro on facets and mfinity
on edges and corners. The cube provided a useful check
of the effects of sharp edges on computations. It has been
tilted with regard to coordinate axes to avoid additional
artifacts (most improbable in reality) due to a rigorous
alignment of the object’s surface and field boundarics. In
the convex region, i.e. close to cube edges, discrepancies
can be seen in bhoth the histogram comparison (between
0.05 and 0.15 voxel ') and scattering graph (in the form of
a wide “plume”). Tt can be scen from Figure 9a that these
numerical errors are mostly limited to the six first voxel
rows adjacent to cube edges. Ficld boundaries present also
(undesired) sharp edges. This is the rcason for the limit of
8 voxels distance from field boundaries (two more voxels
to ensurc that side effects are suppressed) introduced in
Section 3.2.

3.3 Natural snow

3.3.1 Results in 3D

For this sample of rounded grains (quasi-spherical), we
expected uniform positive (convex) curvatures for grains.

curopean Phyvsical Journal Applied Physics

Since water wets 1ce and becausce of capillarity, all wa-
ter meniscl should be connected together and curvature
should be negative or zero in any part of menisci. More-
over, at the end of the drainage stage, when the sample
is still at T" = Ty = 0 °C, the capillary pressure should
be uniformly negative. The variation of hydrostatic pres-
sure due to the height of the sample (2.5 mm) is negligible
as compared to capillary pressure around millimeter-size
grains. Small recarrangements of menisci curvature might
occur becausc of the slow refreezing of the sample, but a
characteristic (negative) value is expected in such regions.

The regult of Figure 10a fulfills these statements, as
can be seen from the layout of colors. In the same way, cur-
vature histograms present a characteristic bulge in necga-
tive values, which can be located at —0.075 voxel !, Voxcl
size being a = 2 x 107 ° and water surface tension being
vy = 0.073 N/m, the corresponding capillary pressure
is P. = 2C~yv/a =~ 550 Pa. In hydrostatic conditions,
the corresponding height of the sample above the water
saturated layer would be about 5 cm at the moment of
sampling. This value of a tew cm 1s consistent with our
sampling conditions (snow block height ~ 20 c¢m). More-
over, the two histograms (from inner and outer skeleton)
merge almost exactly (see Fig. 10b). They are also in ex-
cellent agreement with results obtained from the manually
contoured image of the snow sample (Fig. 6}; this provides
a reliable validation of the partly automatic generation of
the 3D data file presented above.

3.3.2 Comparison with 2D results

The (2D} histogram of outline curvatures has bcen su-
perimposed to 3D histograms in Figure 10b. As discussed
above. a rcasonable comparison between 2D and 3D his-
tograms can be done only for rounded shapes (such as
wet grains), in the regions of positive curvatures: concave
regions arc hidden in most cases. The 2D histogram has
then been normalized with respect to the number of posi-
tive values. The three histograms peak at the saine valuc
of 0.07 voxel ! — that is — a mean grain radius of 0.57 mm.

Whercas concave regions can hardly be detected 1n 2D,
2D positive values fit correctly 3D histograms. This is con-
sistent with the quasi spherical shape of grains in our sam-
ple {the arc which generates the outline is included in a
plane that contains the normal n).

3.4 Discussion of resolution vs. field practical limits

Computing local curvaturc on a voxel P uses a given num-
ber of neighboring voxels (in our examples, a 20° cube
around F). The range of correctly evaluated curvature
alues 1s related to the neighbouring size, and this rela-
tionship is not straighttorward. The problem has been ad-
dressed in 2D [8, for the most common grain shapes and
convex {positive) curvatures. For instance, a neighbouring
size of 17 pixels allows correct rendering of radii betwecn
0.125 and 0.75 mm for a scaling factor of 15 um per pixel
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Fig. 9. Behaviour of the model in difficult conditions: cube tilted with regard to coordinate axes. (a) Curvature map. The effects
of a steep edge are limited to the 8 neighbouring voxels. The smoothing procedure described in Section 2.4.8, which affects

only the 2 neighbouring voxels, is therefore consistent with the intrinsic side effects of the model. (b) Statistics.

Defects appear

in the convex part of histograms (close to the edge); a divergence between histograms can be seen in the 0.08-0.012 voxel *
region. On the scattering graph, errors appear as a “plume”, tilted with regard to the bisector, at the right of the central spot
of zero curvature facets (correctly computed). This tilt and the divergence between histograms show that to minimize errors
(and increase net accuracy), curvature computations on convex edges should be performed using the complementary skeleton

and vice versa.



56 The European Physical Journal Applied Physics

=
=
.
N
o\
curvature histograms scattering graph
2D/3D comparison wet snow sample
2.0—_ N 0.25‘:
_ | = i
1 —— Image s
1.5— < -
1 —— compl | ~
] |
3 {1 2D iy
° 10— 0.0
X - _ -
_ , ' L
_ '8 -
_ i {,a S
0.5j Al _
T Ty, N :
0.0 —perriada= ;!W! T T e 0.2 T T T T T T T
-0.25 0.0 0.25 -0.25 0.0 0.25
curvature (voxel ™ ) image (voxel™ )

(b)

Fig. 10. Real wet snow sample. (a) Curvature map. Most of the concave regions appear in pink (on bottom color scale,
—0.15 < C < —0.05 voxel™"), and the layout of these regions suggest clearly the path of (previous) water menisci. Thesc
curvature values correspond to a capillary depression of ~550 Pa (see text), consistent with the conditions of sample preparation.
(b) Statistics. In the concave part of the histograms, a bulge can be seen around —0.15 voxel ™' . Image (black) and complementary
(red) histograms merge, and on the scattering graph, the dot pattern follows the bisector. The 2D histogram of grain outlines

of the same sample (green) fits correctly 3D histograms on its convex part. Where they have sense, 2D and 3D curvatures are
in good agreement.
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(comparable to our 3D voxel size of 20 pm), all radii (con-
cave and convex) fall within these limits on 2D sections of
the experimental sample. Moreover. we know from the ex-
perience of digitizing snow samples that in the case of wet
orains, it is necessary to analyze only a few grains (gener-
ally 2 or 3) to obtain values of convex radii that are rele-
vant to the whole sample. This is consistent with the fact
that the standard deviation of convex curvatures is low
for wet grains |8|. On our 2D sections the summed length
(in pixels) of grain perimeters was found to be equal to
about 5 times the mean perimeter of one grain (there are
about 5 grains per section plane). Since the actual curva-
ture computation is two-dimensional (in one given section
plane II{(P) or II5(P)), we can conclude that the neigh-
horing size of 20° voxels in 3D is convenient for computing
curvatures on our wet snow sample. However, this value
has to be considered again for computation on other types
of grains. Moreover, as shown in Figure 10b, the convex
part of 2D histograms fits accurately 3D curvatures; this
provides an additional hint of a good agreement between
resolution and field size for the considered sample.

On the other hand, a correct assessment of low cur-
vatures requires a large number of pixels. For instance,
Figure 8a shows that the model cannot account for ob-
jects “smoother” than a sphere of radius H0 voxels using
our parameter settings; such objects are considered as zero
curvature surfaces. This is not a problem in the capillary
regime since the thermodynamic contribution of very low
curvatures is negligible.

Outlook and conclusion

This work aims at providing a database of characteris-
tic three-dimensional snow microstructures adapted to the
fine-scale description of capillarity, percolation in the un-
saturated regime (by far the most frequent with snow)
and snow metamorphism. The two following subjects have

been addressed in this study.

3D imaging

Serial cuts have been applied to snow samples for over
10 years |12]. By using specularly reflected light in our ex-
periments, we could prevent problems due to the numer-
ous and various optical “defects” of snow. which is neither
opaque nor fully transparent. Combined with standard
morphologic 1mage processing, the use for each section
plane of views from both fresh and sublimated material
allowed a reliable and quasi-automatic contouring of the
1ce phase; this procedure led to a binary 3D data file in
a reasonable time for unique acquisition (a few hours for
1287 voxel).

However, building a database with such long and del-
icate experiments in a cold laboratory would be tedious.
Modern imaging techniques such as NMR microscopy [13)
and X-ray tomography [14] allow 3D reconstruction of
porous media with a resolution better than 20 pum. In
fact, our serial cut experiment has to be considered as a
necessary means of direct validation of the above modern
1maging techniques on snow. Active collaborations are now

in progress, with Université Paris XI (U2R2M, Orsay) on
NMR microscopy, and with ESRF synchrotron (Grenoble)
on X-ray tomography [15], and we expect the first results
in the next few months.

Curvature modeling

After validation on geometric shapes, the curvature model
has been successfully tested on our 3D image of real snow.
Although connection properties of the two phases are un-
related, the histogram of curvatures remains unchanged
whether curvatures are computed from grain phase ( “im-
age”) or from pore phase (“complementary” ). A curvature
model 18 a valuable tool for the studyv of real porous me-
dia. In the field of snow physics, one possible application
is to locate on refrozen wet snow the percolation paths
which were active before sampling: a realistic modeling of
water percolation, including tortuosity, will become possi-
ble. Another use of this model for snow would be to allow
a fully physical parameterization of grain metamorphism
in snowcover evolution models such as Crocus |16].

We thank J.P. Laurent and P.M. Adler for fruitful discussions
and providing us valuable test files, and P. Lamboley who wrote
the program for visualizing 3D data files.
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