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Abstract

Snow, from its fall until its full melting, under-
goes a structural metamorphism that is governed by
temperature and humidity fields. Among the many
possible mechanisms that contribute to snow meta-
morphism, those that depend only on curvature are
the most accessible to modeling. In this paper, tech-
niques of volume data analysis adapted to the com-
plex geometry of snow are introduced and then ap-
plied to experimental tomographic data coming from
the isothermal metamorphism of snow near 0° C. In
particular, an adaptive algorithm of curvature compu-
tation is described. Present results on the evolution
of specific surface area and anisotropy already show
that such image analysis methods are relevant tools
for the characterization of real snow microstructures.
Moreover, the evolution of the curvature distribution
with time provides valuable information for the devel-
opement of sintering models, same as a possible quan-

titative calibration of snow grain coarsening laws.



1 Introduction

Modeling the behaviour of snow microstructure is essential for
avalanche risk forecasting, mainly as a means to provide a parametriza-
tion of grain scale physics into existing or future models at the field
scale (Jordan, 1991; Brun and others, 1992; Bartelt and Lehning,
2002). Existing models simulate the evolution of snow layers using
an experimental parametrization of metamorphism. It is presently
obtained from a characterization of snow in the field using grain
silhouettes of isolated grains (Lesaffre and others, 1998) or 2D thin
section analysis (Good, 1987; Edens and Brown, 1991; Brown and
others, 1994). Recent 3D imaging techniques (Coléou and others,
2001) are not yet implemented as a practical means of snow mi-
crostructure characterization. Substantial help could be found in
the extensive research in the domain of materials and porous media
(Bernache-Assolant, 1993; German, 1996; Bullard, 1997a). How-
ever, the various features of snow metamorphism (Colbeck, 1997)
remain a particularity that needs to be adressed by the snow and
ice community.

Isothermal metamorphism is probably the simplest situation, mainly

governed by the distribution of mean curvature along the grain /



pore interface, like many sintering processes. Near 0°C, one can
expect a reduced influence of possible surface or bulk diffusion at
grain boundaries (Colbeck, 1998; Adams and others, 2001; Col-
beck, 2001), owing to the large saturation vapor pressure of water
at these temperatures. We proposed recently a simple evaporation
scheme and performed preliminary tests using the first results of
an experiment of controlled isothermal metamorphism at —2° C
(Flin and others, 2003).

These tests do not presently allow any conclusions regarding the
validity of the evaporation-condensation approach versus the more
common (but much less tractable) diffusive scheme.

The characterization of microstructures is once again necessary in
order to go farther in metamorphism modeling. Here we present
some new developements of 3D snow image analysis and discuss
their relevance to some typical behaviour observed in a real meta-
morphism experiment. After a short presentation of the exper-
imental procedure, the numerical methods used in our work are
described. The porosity, specific surface area, anisotropy and cur-
vature distribution are then presented as a function of time and

briefly discussed as possible guidelines for further modeling.



2 Experiment of isothermal meta-

morphism

A three-month long experiment of isothermal metamorphism at
—2° C was run at Col de Porte, Chartreuse mountain, French
Alps, to provide microtomographic three-dimensional data for the

validation of metamorphism models.

2.1 Sampling

A 0.5 x 1 m slab of recent snow was first collected in the field (on
01/16/02) 15 hours after a snowfall (exterior temperature —1° C,
slab thickness 12 cm). To prevent sublimation and temperature
gradient effects, the slab was stored in a closed styrodur box in-
side the cold room maintained at —2 £ 0.2° C. Till the end of
the experiment, all manipulations were done in the cold room at
this temperature. A three-centimeter wide core was sampled at
increasing time intervals, ranging from 24 hours at the beginning
to one week at the end of the experiment. The collected slab was
constituted of three layers whose thicknesses were measured at
each sampling. All samples were taken in the middle layer of the

slab, always more than 10 cm away from already sampled regions.



2.2 X-ray absorption microtomography

Once sampled, each core was impregnated by 1 - chloronaphtalene
and machined into the shape of a 9 x 9 mm cylinder for microto-
mograhic acquisition. 3D images of snow samples were obtained
at the ID19 beamline of the European Synchrotron Radiation Fa-
cility (ESRF) at Grenoble, France by X-ray absorption microto-
mography (Coléou and others, 2001) using a specially designed
refrigerated cell (Brzoska and others, 1999a). All the images were
obtained at 18-20 keV, with a voxel (volume element) size of 4.91
pm. The grey-level images obtained, reconstructed at the ESRF,
were contoured using a semi-automatic procedure. More informa-
tion about core preparation and image processing can be found in
(Flin and others, 2003). The 3D images obtained were 600 voxels
wide, which amounts to a considerable quantity of volumic data.
To allow reasonable processing times for our normal and curva-
ture algorithms, the resolution of the 3D images was reduced by a
factor 2 in the 3 axes. Thus, in all the 3D snow images presented

in this article, one voxel corresponds to 9.82 pm.



3 Geometrical analysis

Presented here are the numerical algorithms we used to obtain the
geometrical information describing our snow 3D numerical images:
porosity, specific surface area, anisotropy and curvature distribu-

tion.

3.1 Porosity

The porosity P is the ratio of the pore volume by the total volume
of the considered sample. The evolution of this parameter during
the metamorphism is directly related to the packing of the snow.
It can be obtained simply by counting the voxels belonging to the
pore phase in a chosen region of interest D. Let Np be the number
of voxels p in D, we have:
pED
Np

where f(p) = 1 for p belonging to the pore, 0 otherwise.

3.2 Specific surface area

The specific surface area (SSA) of a snow sample is defined by the
total surface area of the air/ice interface per mass unity of the

considered sample. The SSA is a useful parameter for describing

7



the metamorphism of a snow layer, as it indicates the potential of
this snow to undergo physical evolution. This parameter can be
computed by estimating the surface area Sp included in a region
of interest D. Stereological methods can be used to obtain such
a surface estimation and give good results for section planes that
contain a large number of grains (Serra, 1982; Chermant, 1992). In
(Brzoska and others, 2001), an original method was proposed and
compared to other non-stereological methods. Here the algorithm

we used for the Sp determination is briefly reviewed:

e the unit outward normal vectors 7 (p) are adaptively calcu-
lated on each surface voxel p € D by an original algorithm

(Flin and others, 2001; Coeurjolly and others, in press).

o for each surface voxel p, a weight ¢(p) is computed as follows:

1
max(lnx(p)lv |ny(p)|7 |n2(p)|)

(2)

g(p) =

where n,(p), n,(p) and n.(p) are the projections of 7 (p)

along the three coordinate directions of the voxel grid.

e Sp is obtained, in voxel units, by summing all the contribu-

tions g(p) in D.



Then, the SSA in physical units can be calculated as follow:

Sp
pNplo

SSA=

where p is the ice density and [y the size of one voxel.

3.3 Anisotropy

By ’anisotropy’, we mean the anisotropy of the normal vector field
describing the ice surface. An estimation of the anisotropy in snow
samples is of great importance for understanding processes during
metamorphism and packing. We propose here a tridimensional
anisotropy estimator inspired by the work of J. Serra (1982) but
using the knowledge of the normal vector in each surface voxel.

Let us define a,(p), ay(p) and a,(p) the three coordinate angles

of 7 (p).

e the unit outward normal vector 7 (p) is first calculated on

each surface voxel p € D, as in the above section.
e the angles a,(p), ay(p) and a,(p) are then computed.

e the angular distributions on D, Ap(ay), Ap(ay) and Ap(a.)
are evaluated by counting the number of voxels correspond-

ing to each class of angle.



e on each histogram obtained, this number is expressed in
percentage of the total surface voxels belonging to D and

plotted in polar coordinates.

Note that the distributions are only defined between 0 and 7 rad.
As this algorithm consists in interpreting volumic data by angles
with one direction of the space, the distributions obtained are not
straightforward.

For example, let us consider the distributions of a sphere. As this
object is fundamentally isotropic, the distributions are invariant

by rotation and we have:
Ap(az) = Ap(ay) = Ap(a.) = Ap(a) (4)

with a the angle between 77 (p) and a chosen direction of the space.
The number of points corresponding to a class of angle « is equal
to the length of the parallel line defined by a. This value amounts
to 2rRsina, R being the radius of the sphere (Fig. 1). The

surface area of a sphere being 47 R?, we have:

100 sin «
Ap(a) = BET IR (5)

with Ap(a) expressed in percentage of the total surface voxels be-

longing to D.
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Note that Ap(a) will have a maximal value at 7 (equatorial line)
and minima at 0 and 7 rad (poles).

For more complex objects, one can detect anisotropies by compar-
ing the distributions obtained in the three directions of the space

and the distribution of its equivalent sphere (see section 4.3).

3.4 Mean curvature distribution

The 3D mean curvature C of a surface corresponds to the quantity
dA/(26V), where §A is the incremental change in the element’s
area when it is normally displaced by local addition of material
of volume §V. As can be seen from Kelvin’s equation (Adamson,
1990), the mean curvature is directly involved in vapor exchanges
and the determination of this quantity in each point of the surface
is essential for monitoring the snow metamorphism.

Several methods were proposed for computing mean curvatures
(for example, see the work of Bullard and others (1995) and Rieger
and others (2002). In a preceding paper (Brzoska and others,
1999b), we presented such an algorithm in which, C'(p), the cur-

vature on each voxel p, was computed as follows:

=3 (0 + ) 0

ri(p)  r2(p)
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where the values —— and —— of the 2D-curvature were obtained
r1(p) r2(p)

on two orthogonal planes that contain 7 (p) by fitting the discrete
curves by parabolas. This method gives fairly good results but

presents some drawbacks:

e the determination, in each voxel p, of two orthogonal planes
containing 77 (p) needs systematic rotations of a small dis-
crete neighorhood around p. This leads to some discretiza-

tion effects and intensive computation time.

e the use of a large fixed neighborhood (about 20 voxels wide)
for 2D curve fitting implies that small objects can not be

processed properly.

In this paper, we propose an adaptive algorithm that avoids the

above disadvantages. This method involves the following steps:

e the background distance map of the ice phase M (ice) is first
generated. In other words, we label all voxels in the object
with the distance to the closest background voxel. Many
algorithms exist to compute such a map, some of them
use chamfer metrics to approximate the Euclidean metric
(Borgefors, 1986; Verwer, 1991), other methods compute

the exact Euclidean distance transform (Hirata, 1996; Mei-
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jster and others, 2000). We chose a second-neighbor chamfer
distance ds_7_g9_11-12—15 due to its simplicity and its good

accuracy (Verwer, 1991).

the background distance map of the pore phase M (pore) is
then constructed. Note that the same nearest background
points used for the determination of M (ice) should be used

for M (pore).

a distance map on the whole image M (image) is obtained
by combining the two background distance maps as follows:

M (image) = M (ice) — M (pore).

we compute the gradient map of M (image) using a classical

Prewitt first-neighbor mask derivative filter (Prewitt, 1970).

in each surface voxel p, the divergence of the unit normal
vector T (p) is estimated by averaging the first-neighbor di-
vergences of the background distance gradient in an appro-
priate surface neigborhood around p. Note that this neigh-
borhood is obtained by applying the same angular and sym-
metry criteria as for the determination of normals (Flin and
others, 2001; Coeurjolly and others, in press) and can be

directly deduced from this computation.
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e ('(p) is then given by the following relation (Sethian, 1996;
Bullard, 1997b):
v (p)

Clp)=——" (7)

where d is the dimensionality of the considered space R?

(d = 3 in this paper).

The curvature distribution #p(C') on D is evaluated by counting
the number of voxels corresponding to each class of curvature. On
each histogram obtained, this number is expressed in percentage

of the total surface voxels belonging to D.

4 Results and discussion

Here are presented the evolution of porosity, specific surface area,
anisotropy and curvature distribution during the experiment of
isothermal dry snow metamorphism. All computations were ap-
plied on 250 voxels (~ 2.5 mm) wide images. Except for the SSA
where a logarithmic scale was used, all times were counted from

the first sampling.
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4.1 Porosity evolution

The porosity was computed for 10 tomographic images and plotted
versus time in Fig. 2a. To estimate the soundness of the results
obtained, the inverse of density was computed from the porosity
value. This quantity was compared to the thickness variation of
the snow layers measured during the experiment (see Fig. 2b).
The inverse of density and the thickness data are expressed in
percent of the initial values (obtained 15 hours after the snowfall).
Note that the thickness estimation of individual layers is inaccu-
rate because of the difficulty to distinguish the limit between two
layers. The uncertainty is particularly significant for the middle
layer, for which the errors come from the estimation of both the
upper and lower borders. For these reasons, the slight differences
of the packing rate that can be observed between the three layers
are not significant. The total layer thickness measurement is much
more accurate as it does not involve any difficult estimation of the
border position. Despite of evident noise due to measurement er-
rors and small volume analysis, these five curves are in fairly good
agreement and seem to follow the classical dry snow packing laws.

This allows us to conclude that:
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e there is no significant discrepancy between the evolution of

the three snow layer thicknesses.

e the precision on porosity obtained by small volume numeri-
cal analysis seems equivalent to that obtained by a packing

measurement.

4.2 Specific surface area evolution

The SSA evolution with time ¢ is plotted in Fig. 3. By fitting
this evolution with a logarithmic function, we obtain the following

time dependency with a correlation coefficient of 0.986:
SSA(t) = —157.23log(t) 4 681.52 (8)

This law is in fairly good agreement with the results based on CH4
adsorption at liquid nitrogen temperature (Legagneux and others,

2003; Cabanes and others, 2003).

4.3 Anisotropy

The angular distributions Ap (o), Ap(ay) and Ap(a,) were esti-
mated on each tomographic image. The early stages of the meta-
morphism show a strong angular variability of the distributions:

this can be explained by the numerous large plates contained in
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the images and the relatively small region studied. After the first
66 hours of the experiment, the variability of the distributions is
decreasing and one can observe a slight but persistent anisotropy
along the vertical direction (z-axis). This phenomenon is illus-
trated on Fig. 4, in which the distributions were averaged on the
eight last stages of the experiment (from 66 to 2011 hours).

In this graph, the distribution of the equivalent sphere was plotted
to help in comparing distributions along the different axes. For
obtaining the equivalent sphere distribution, the equation (5) was
applied with R = m, Cnean being the mean curvature esti-
mated from the eight considered images.

For a coordinate angle about 3, Ap(a.) is significantly smaller
than the distribution of the equivalent sphere (and significantly
smaller than Ap(a,) and Ap(ay)). This indicates that less nor-
mals are orthogonal to the z-axis than orthogonal to the other
axes. This observation is consistent with the values of the distribu-
tions near 0 and 7 and indicates a slight but persistent anisotropy
along the z-axis.

This slight packing along the vertical direction suggests gravity
effects during metamorphism. They should be taken into account

to find out and simulate the mechanisms implied in isothermal
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metamorphism of snow.

4.4 Curvature evolution

Curvature computations were applied on 10 microtomographic im-
ages. For each processed image, the mean curvature distribution
Hp(C) was estimated and plotted in Fig. 5d. In this graph one

can see:

a strong sharpening of the distribution, which denotes the

rounding and smoothing of shapes.

e a decrease of the average mean curvature, which denotes the

increase of the average grain size.

e no significant evolution for negative curvatures.

e a wide and asymmetrical peak at the beginning of the meta-
morphism. This distribution is typical of fresh snow due to
the presence of large planes (zero - curvature) and acute

shapes (high curvature) -see Fig. 5a.

e an acute and symmetrical distribution at the end of exper-

iment, typical of rounded grain -see Fig. 5c.
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5 Conclusion

Geometrical analysis tools have been presented and applied to
an experiment monitoring the isothermal metamorphism of natu-
ral snow in 3D. The evolutions of porosity, specific surface area,
anisotropy and curvature distributions have been obtained and
discussed, showing a correct description of the well known be-
haviour of an aging snow layer. A short-term application would
be a quantitative calibration of the present empirical laws of grain
coarsening and packing used in snow cover models. Additionally,
this documented data set of the isothermal metamorphism con-
stitutes a valuable tool for guiding basic and applied research in
snow physics.

Presently, only a small part of the raw data from this experiment
is actually exploited. To avoid the many theoretical problems
due to sampling below the representative elementary volume, the
presently developed techniques will have to be applied to the full-
resolution data set, especially for studies related to packing, heat
transfer and micromechanics. Finally, these measurements provide
quantitative data for the validation of metamorphism models and

offer interesting prospects for improving models and understand-
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ing the physical phenomena that happen in snow microstructure.
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Captions

e Fig. 1. For a sphere of radius R, Ap(a) = % %. This

distribution has a maximal value for a = 7 (equatorial line).

e Fig. 2. Porosity and snow layer evolution with time. Poros-
ity evolution (a) and comparisons between thickness of snow
layers and inverse of density evolutions (b). There is a fairly
good agreement between snow layer measurement and nu-

merical estimation at microstructural scale.

o Fig. 3. Specific surface area plotted in logarithmic scale.
Time is counted from the begining of the snowfall. The SSA
evolution follows a logarithmic law as mentioned in (Legag-
neux and others, 2003; Cabanes and others, 2003) -see equa-

tion (8).

o Fig. /. Anisotropy visualization on polar diagram: one can
see a slight but persistent packing along the vertical direction

(z-azis) for times greater than 66h.
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e Fig. 5. Curvature evolution during isothermal metamor-
phism of a dry snow sample. Grains are clearly growing
and rounding during the metamorphism. First stage (a),
intermediate stage (b) and last stage (c) of the isothermal
experiment. Image edges are 256 voxels (~ 2.5 mm) wide.
The evolution of curvature distribution Hp(C') during the

metamorphism is plotted in (d).
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