3D Growth Rates from Tomographic Images: Local Measurements

for a Better Understanding of Snow Metamorphism
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1. Introduction

Once deposited on the ground, snow forms a complex porous material whose microstructure constantly transforms over time. These evolutions, which strongly impact the physical and
mechanical properties of snow (e.g. Srivastava et al, 2010; Lowe et al, 2013; Calonne et al, 2014) need to be considered in details for an accurate snowpack modeling. However, some of the
physical mechanisms involved in metamorphism are still poorly understood.

To address this problem, several investigations combining X-ray tomography and 3D micro-modeling have been carried out (e.g. Flin et al, 2003; Kaempfer and Plapp, 2009; Pinzer et al, 2012)
but precise comparisons between experimentation and modeling remain difficult. One of the difficulties comes from the lack of high resolution time-lapse series for experiments occurring
with very well-defined boundary conditions, and from which precise measurements of the interfacial growth rates can be done.

Using CellDyM, a recently developed cryogenic cell (Calonne et al, 2015), we conducted in situ time-lapse tomographic experiments on several snow and ice samples under various
conditions (isothermal metamorphism at -7°C, temperature gradient metamorphism at -2°C under a TG of 18 K/m, air bubble migration in a single crystal at -4°C under a TG of 45 K/m). The
non-destructive nature of X-ray microtomography vyielded series of 8 micron resolution images that were acquired with time steps ranging from 2 to 12 hours. An image analysis method was
then developed to estimate the normal growth rates on each point of the ice-air interface and applied to the series obtained.

Here, we focus on isothermal metamorphism at -7°C, where the results obtained and their comparison to those of existing models (e.g. Flin et al, 2003; Bretin et al, 2015) give interesting
outlooks for the understanding of the physical mechanisms involved.

2. CellDyM: a Cryogenic Cell for Time-Lapse Tomography at Room-Temperature
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3. A Simple Method to Measure Normal Growth Rates from 3D Time-Lapse Images ey given by e cistance map @ as folows:
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4. Preliminary Results: Is Sublimation-Deposition a Dominant Mechanism at -7°C? Which Value for a_?

Approach 1: Growth rates measurements Approach 2: Phase-field model :
B Conclusions:
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