
DigitalSnow - ANR-11-BS02-009
Deliverable 4

Discrete-Continuous approach for
deformable partitions

Élie Bretin
Institut Camille Jordan - INSA Lyon

elie.bretin@insa-lyon.fr

Roland Denis
LAMA - Université Savoie Mont Blanc

roland.denis@univ-smb.fr

Frédéric Flin
CEN - Météo-France & CNRS

frederic.flin@meteo.fr

Jacques-Olivier Lachaud
LAMA - Université Savoie Mont Blanc

jacques-olivier.lachaud@univ-smb.fr

Édouard Oudet
LJK - Université de Grenoble

edouard.oudet@imag.fr

Tristan Roussillon
LIRIS - INSA Lyon

tristan.roussillon@insa-lyon.fr

November 6, 2015

mailto:elie.bretin@insa-lyon.fr
mailto:roland.denis@univ-smb.fr
mailto:frederic.flin@meteo.fr
mailto:jacques-olivier.lachaud@univ-smb.fr
mailto:edouard.oudet@imag.fr
mailto:tristan.roussillon@insa-lyon.fr

Contents
1 Introduction 1

2 Grain growth velocity 2

3 The phase-field point of view 3
3.1 Derivation of the model . 3
3.2 Extension to multi-grain case . 4

3.2.1 Non-overlapping condition 4
3.2.2 Volume conservation . 5
3.2.3 Mixing the two constraints 6

4 Numerical implementation 7
4.1 Reference scheme . 7
4.2 Remarks on the computational complexity 9
4.3 Zero approximation . 9
4.4 New non-overlapping Lagrange multiplier 13

4.4.1 First formulation . 13
4.4.2 Second formulation with given volume 13
4.4.3 Results . 14

4.5 Efficient storage . 16
4.5.1 Basic storage operations . 16
4.5.2 LabelledMap class . 17

4.6 Bounding boxes . 19
4.7 Other optimizations . 20

5 Performance analysis 20

6 Some applications 27
6.1 The Kelvin’s problem . 27

6.1.1 The 2D case: the honeycomb 27
6.1.2 The 3D case: the Weaire and Phelan structure 32

6.2 Estimation of the condensation coefficient 35

7 Conclusion 38

Figure 1: Visualization of the crystal orientation of a snow sample.
Each color corresponds to a particular crystal orientation. These data
were acquired at the ESRF ID19 beamline under the SNOW-WHITE
project (ANR-06-BLAN-0396).

1 Introduction
As explained in the first DigitalSnow deliverable about the modeling of dry snow
metamorphism, dry snow accumulated on the ground is a complex porous medium
constituted of air, water vapor and ice. The evolution of the interfaces between
these phases, due to water condensation and sublimation (thermodynamical ef-
fect), and due to the structure rearrangement (mechanical effect), is known as the
snow metamorphism.

In fact, as illustrated in figure 1, the ice phase is constituted of multiple ice
crystals with many different orientations. Taking into account this polycrystalline
microstructure is important to properly model the anisotropic behavior of the snow
metamorphism, especially under temperature gradient conditions.

Therefore, it is important to model dry snow as multiple ice grains with their
own dynamics, and interacting with each others. As main physical phenomena
occur at the interfaces between the grains and the air (condensation and subli-
mation) and since the geometrical properties of those surfaces impact directly the
model (e.g. the curvature modifies the saturated vapor pressure, by Kelvin’s law),
an adapted surface representation is needed.

A common choice is to use an interface capturing method, like the level-set

1

methods or the phase-field method. However, those methods basically need one
field for each ice grain. Since we have to deal with hundreds of grains on a three-
dimensional space discretized with up to 10003 points, it implies a very large
memory consumption and CPU usage. Several algorithms have been developed so
far, for level-set (see e.g. [8]) and phase-field methods (see e.g. [5], [10] and [9]),
in order to deal with those issues.

In this deliverable, we will focus on the phase-field description of a simplified
multi-grain growth model based on the Allen-Cahn equation, associated with some
of those algorithms and a computationally efficient implementation.

This framework is meant to be integrated as a package in the DGtal library1.

2 Grain growth velocity
In a first step, let’s recall the Hertz-Knudsen equation relating the growth velocity
to the supersaturation of the vapor:

ρicevn = α

√
kT

2πm (ρv − ρvs(T,K)) on Γ, (1)

where ρice is the density of the ice, vn the growth velocity normal to the ice/air
interface Γ, oriented toward the air, α the condensation coefficient, k the Boltz-
mann’s constant, T the temperature at the interface Γ, m the mass of a water
molecule, ρv the vapor density, and ρvs(T,K) is the saturation density that de-
pends on the temperature and the interface mean-curvature K.

This saturation density can be approximated by:

ρvs(T,K) ≈ ρvs(T)(1 + d0K), (2)

where ρvs(T) is the reference saturation density when the mean-curvature is null,
and where d0 is the capillary length.

In the following, we will denote as C the main factor in (1):

C := α

√
kT

2πm. (3)

We will now consider that the supersaturation term (ρv − ρvs(T,K)) depends
only on curvature effect, e.g. that ρv ≡ ρvs(T), and we get the following normal
velocity expression:

vn = −Cρvs(T)
ρice

d0K. (4)

1http://dgtal.org/

2

http://dgtal.org/

Since this mean-curvature dynamics is a very simplified model of the crystal
growth (see equations (15) to (21) of the first DigitalSnow deliverable), it does not
guarantee that the ice volume stays constant.

3 The phase-field point of view
In the phase-field method, the interface Γ is the level-set of value 1

2 of a phase
function u. More precisely, if the interface is smooth enough, the phase-field
function is defined from the distance function d to the interface Γ, with an interface
sharpness parameter ε:

u(x, t) := q

(
d(x, t)
ε

)
(5)

with the profile function q:

q(s) := 1
2

(
1− tanh

(
s

2

))
. (6)

This last function is the solution of a minimization problem associated to a
double-well potential W :

W (s) := 1
2s

2 (1− s)2 . (7)

For more details about this construction, please refer, for example, to [1].

3.1 Derivation of the model
From this framework, we get the following useful relations:

q
′(s) = −

√
2W (q(s)), (8)

q
′′(s) = W

′ (q(s)) . (9)

Other relations arise from the derivation of u:
∂u

∂t
(x, t) = 1

ε
q
′
(
d

ε

)
∂d

∂t
(x, t), (10)

∇u(x, t) = 1
ε
q
′
(
d

ε

)
∇d(x, t), (11)

∆u(x, t) = 1
ε2 q

′′
(
d

ε

)
+ 1
ε
q
′
(
d

ε

)
∆d(x, t). (12)

Since the interface normal speed is directly linked to the distance function by:
∂d

∂t
(x, t) = −vn (13)

3

and noting that the mean curvature of a surface is equal to the laplacian of the
distance function:

∆d(x) = K on Γ, (14)

we obtain the following phase-field equation related to the interface normal speed (4):

∂u

∂t
(x, t) = d0C

ρvs(T)
ρice

[
∆u(x, t)− 1

ε2W
′(u)

]
on Ω. (15)

In the following, we will work at constant temperature. We can therefore omit the
d0C

ρvs(T)
ρice

coefficient that acts as a time-scale factor. The canonical form of this
equation is thus:

∂u

∂t
(x, t) = ∆u(x, t)− 1

ε2W
′(u) on Ω (16)

kwown as the Allen-Cahn equation.

3.2 Extension to multi-grain case
If we consider N ice grains, we basically duplicate the previous equation (15) for
each grain:

∂ui
∂t

(x, t) = ∆ui(x, t)−
1
ε2W

′(ui(x, t)) on Ω, for i = 1, . . . , N. (17)

and the border Γi of the i-th grain is defined as follows from his phase function ui:

Γi(t) :=
{
x ; ui(x, t) = 1

2

}
. (18)

3.2.1 Non-overlapping condition

However, this set of equations doesn’t guarantee that the grains do not overlap.
A common solution is to add a Lagrange multiplier λ(x, t) associated to a non-
overlapping condition ∑N

i=1 ui(x, t) = 1, ∀x ∈ Ω. We obtain:

∂ui
∂t

(x, t) = ∆ui(x, t)−
1
ε2W

′(ui(x, t)) + λ(x, t) ∀(x, t) ∈ Ω× (0,∞), (19)
N∑
i=1

ui(x, t) = 1 ∀(x, t) ∈ Ω× [0,∞). (20)

The non-overlapping constraint is equivalent to:

N∑
i=1

ui(x, 0) = 1 and
N∑
i=1

∂ui
∂t

(x, t) = 0 ∀(x, t) ∈ Ω× (0,∞). (21)

4

Using this into the Allen-Cahn equation, we get

N∑
i=1

∆ui(x, t)−
1
ε2

N∑
i=1

W
′(ui(x, t)) +Nλ(x, t) = 0. (22)

Since the laplacian operator is linear and the sum of ui is equal to 1, the Lagrange
multiplier expresses as:

λ(x, t) = 1
Nε2

N∑
i=1

W
′(ui(x, t)) (23)

and we finally obtain the grain growth equations:

∂ui
∂t

(x, t) = ∆ui(x, t)−
1
ε2W

′(ui(x, t)) + 1
Nε2

N∑
i=1

W
′(ui(x, t)) (24)

with initial condition
N∑
i=1

ui(x, 0) = 1 ∀x ∈ Ω. (25)

3.2.2 Volume conservation

As previously noted, this mean-curvature movement does not conserve the grain’s
volume. For that purpose, we also add a Lagrange multiplier µi(t) for each grain,
that acts as a forcing term in the Allen-Cahn equation:

∂ui
∂t

(x, t) = ∆ui(x, t)−
1
ε2W

′(ui(x, t)) + µi(t)
1
ε

√
2W (ui(x, t)), (26)

∂

∂t

∫
Ω
ui(x, t) dx = 0 ∀i = 1, . . . , N (27)

where the volume of the i-th grain is approximated by the integral of the i-th
phase-field. This approximation is justified by the proposal 12 of [1]:

|Ωi| =
∫

Ω
ui dx+O(ε2) (28)

where Ωi = {x ∈ Ω ; ui(x) ≤ 1
2}.

The Lagrange multiplier is here weighted by
√

2W (ui(x, t)) to keep a good
behavior of the phase-field function (see chapter 3 of [1] for more details).

As in the previous section, we put the constraint into the evolution equation:∫
Ω

∆ui(x, t) dx− 1
ε2

∫
Ω
W
′ (ui(x, t)) dx+ µi(t)

1
ε

∫
Ω

√
2W (ui(x, t)) dx = 0. (29)

5

Under common assumptions, i.e. if Ω is periodic or if ui observes a Neumann
boundary condition (that is consistent with volume conservation), the laplacian
term is null due to the Stokes theorem. Thus, the Lagrange multiplier expresses
as:

µi(t) = 1
ε

∫
ΩW

′ (ui(x, t)) dx∫
Ω

√
2W (ui(x, t)) dx

(30)

and we finally obtain the following evolution equation:

∂ui
∂t

(x, t) =

∆ui(x, t)−
1
ε2

W ′(ui(x, t)) + ε

∫
Ω
W
′ (ui(x, t)) dx∫

Ω

√
2W (ui(x, t)) dx

√
2W (ui(x, t))

 . (31)

3.2.3 Mixing the two constraints

As we want to satisfy both constraints, we write:
∂ui
∂t

(x, t) = ∆ui(x, t)−
1
ε2W

′(ui(x, t)) + µi(t)
1
ε

√
2W (ui(x, t)) + λ(x, t), (32)

N∑
i=1

ui(x, t) = 1 ∀x ∈ Ω, (33)

∂

∂t

∫
Ω
ui(x, t) dx = 0 ∀i = 1, . . . , N. (34)

Using the second constraint gives us:

µi(t) =
1
ε2

∫
Ω
W
′ (ui(x, t)) dx−

∫
Ω
λ(x, t) dx

1
ε

∫
Ω

√
2W (ui(x, t)) dx

. (35)

We remark that λ is spatially defined up to a constant, and thus we can set:∫
Ω
λ(x, t) dx ≡ 0. (36)

Now using the first constraint, we get:

λ(x, t) = 1
ε2N

N∑
i=1

W
′ (ui(x, t))−

1
ε

N∑
i=1

µi(t)
√

2W (ui(x, t)), (37)

= 1
ε2N

N∑
i=1

W ′ (ui(x, t))−

∫
Ω
W
′ (ui(x, t)) dx∫

Ω

√
2W (ui(x, t)) dx

√
2W (ui(x, t))

 (38)

6

that enable us to directly numerically solve equation (32).
We now have the set of equations needed to simulate a simplified dry snow

metamorphism. Let’s see how to efficiently implement it in the next section.

4 Numerical implementation

4.1 Reference scheme
We suppose that the domain Ω is equal to the cartesian product of periodic fields
of R:

Ω =
n×
k=1

R/LkZ, (39)

We propose to use a Lie splitting of the Allen-Cahn equation in order to exactly
solve the diffusion part by Fourier transform and we use an explicit Euler time-
integration scheme for the reaction part (including the two Lagrange multipliers).

Thus, given a time step δt, we obtain the following algorithm 1 where FFT
and IFFT stand for forward and backward Fast Fourier Transform algorithm, and
where k denotes the coordinates in the frequency domain.

7

Algorithm 1: Reference scheme to solve Allen-Cahn equation
Data: u0

i∈{1,...,N}, δt and ε
1 foreach n ≥ 0 do

// Solve the diffusion part
2 for i← 1 to N do
3 ûni ← FFT(uni) ;
4 û

n+1/2
i [k]← exp

(
−4π2|k|2δt

)
ûni [k] ;

5 u
n+1/2
i ← IFFT

(
û
n+1/2
i

)
;

6 end
// Pre-calculate recurrent terms

7 for i← 1 to N do
8 IntW ′ ,i ←

∫
Ω
W

′
(
u
n+1/2
i (x)

)
dx ;

9 Int√2W,i ←
∫

Ω

√
2W

(
u
n+1/2
i (x)

)
dx ;

10 end
// Calculate the Lagrangian multiplier associated to the

non-overlapping constraint

11 λ(x)← 1
ε2N

N∑
i=1

[
W

′
(
u
n+1/2
i (x)

)
−

IntW ′ ,i

Int√2W,i

√
2W

(
u
n+1/2
i (x)

)]
;

// Calculate the Lagrangian multiplier associated to the volume
conservation

12 for i← 1 to N do

13 µi ←
1
ε

IntW ′ ,i

Int√2W,i

;

14 end
// Solve the reaction part

15 for i← 1 to N do

16 un+1
i ← u

n+1/2
i + δt

[
− 1
ε2W

′
(
u
n+1/2
i

)
+ 1

εµi

√
2W

(
u
n+1/2
i

)
+ λ

]
;

17 end
18 end

This numerical scheme is stable under the condition:

δt ≤ ε2

2 . (40)

The periodicity of the domain is necessary to use the Fast Fourier Transforma-
tion in order to exactly solve the diffusion part. Nevertheless, there exists some
methods to use other boundaries conditions while using the FFT.

8

4.2 Remarks on the computational complexity
A typical set of initial data, like those obtained by tomography of the dry snow
(see e.g. chapter 7 of [2]), involves hundreds of ice grains on a three-dimensional
spatial domain discretized with 10003 points.

In that case, storing one phase field uni in double precision needs 8 GiB of mem-
ory. Thus, simulating the metamorphism of more than a few ice grains becomes
nearly impossible on an average computation server.

As pointed out by many previous works (see e.g. [5], [10] and [9]), the Allen-
Cahn equation has a "less effect" far away of the grain interface Γ. More precisely,
the phase-field u tends to 1 (interior) or 0 (exterior) far from the interface and a
majority of terms in the equation (32) are weighted by W (ui) and W ′(ui) where
W and W

′ are null at 0 and 1. The diffusion term tends also to 0 far from the
interface.

Therefore, the time derivative of ui tends to 0 in the same conditions. It
appears reasonable to save memory and computational time in those areas.

4.3 Zero approximation
Let τ ≥ 0 be a positive tolerance, and introduce the approximation function ξτ as:

ξτ (x) =

0 if x < τ,

x otherwise.
(41)

The following algorithm 2 adapts the algorithm 1 to take advantage of this
approximation. The modified parts are highlighted in red.

9

Algorithm 2: Scheme for Allen-Cahn equation with zero approximation
Data: u0

i∈{1,...,N}, δt and ε
// Initial zero-approximation

1 for i← 1 to N do
2 u0

i ← ξτ (u0
i) ;

3 end
4 foreach n ≥ 0 do

// Solve the diffusion part
5 for i = 1 to N do
6 ûni = FFT(uni) ;
7 û

n+1/2
i [k] = exp

(
−4π2|k|2δt

)
ûni [k] ;

8 u
n+1/2
i = ξτ

(
IFFT

(
û
n+1/2
i

))
;

9 end
// Pre-calculate recurrent terms

10 for i← 1 to N do
11 IntW ′ ,i ←

∫
Ω
W

′
(
u
n+1/2
i (x)

)
dx ;

12 Int√2W,i ←
∫

Ω

√
2W

(
u
n+1/2
i (x)

)
dx ;

13 end
// Calculate the Lagrangian multiplier associated to the

non-overlapping constraint
14 foreach x do
15 λ(x)← 0 ;
16 for i← 1 to N do
17 if u

n+1/2
i (x) > 0 then

18 λ(x)← λ(x)+ 1
ε2N

N∑
i=1

[
W

′
(
u
n+1/2
i (x)

)
−

IntW ′ ,i

Int√2W,i

√
2W

(
u
n+1/2
i (x)

)]
;

19 end
20 end
21 end

// Calculate the Lagrangian multiplier associated to the volume
conservation

22 for i← 1 to N do

23 µi ←
1
ε

IntW ′ ,i

Int√2W,i

;

24 end
// Solve the reaction part

25 for i← 1 to N do

26 un+1
i ← ξτ

(
u
n+1/2
i + δt

[
− 1
ε2W

′
(
u
n+1/2
i

)
+ 1

εµi

√
2W

(
u
n+1/2
i

)
+ λ

])
;

27 end
28 end

10

To illustrate the effects of this approximation, we use the algorithm 1 to simu-
late a problem of tiling space with a fixed number of parts of equal volume, known
as the Kelvin’s problem (see section 6.1 page 27 and [7] in the three dimensional
space), on a 1282 discretized space with ε equal to two space steps. The result,
after reaching equilibrium, is shown on figure 2.

The first sub-figure, 2a, shows all the parts with artificial colors to see their
borders. The sub-figure 2b illustrates, in gray level, the values of one phase-field ui,
where we barely see its value increasing around some points outside of its frontier.
This effect is amplified when only the positive part of ui is shown, with a positive
cutoff at 0.05, on figure 2d. The negative part of ui is illustred on figure 2c.

In case of a memory usage depending on a zero-approximation ξτ with tolerance
τ = 10−4, the figure 2e shows which points would be stored. If we analyze the
amount of significant values to be stored, there will be an average of ≈ 3.2 of those
values per space point, with a standard deviation of ≈ 2.35.

These figures are good examples of the problems that arise when using a zero-
approximation with the Allen-Cahn equation (32):

1. positive values appear far from the grain, especially at triple points. That
leads to an inefficient memory usage when using zero-approximation.

2. ui exhibits negatives values, around the contacts between two grains. That
leads to significant volume loss when the negative part is lost during zero-
approximation.

This is due to the fact that the non-overlapping Lagrange multiplier λ has the
same effect for each phase-field, even far away from a grain.

11

(a) Each phase-field with different color.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) One phase-field ui.

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

(c) Negative part of one phase-field
min(ui, 0).

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(d) Positive part of one phase-field
with cutoff, min(max(ui, 0), 0.05).

(e) Non null values ui with zero ap-
proximation at τ = 10−4.

Figure 2: Kelvin’s problem in two-dimension (see 6.1, page 27) with
phase-field behavior analysis.

12

4.4 New non-overlapping Lagrange multiplier
4.4.1 First formulation

To fix this, we propose to weight λ by the current phase-field value:

∂ui
∂t

(x, t) = ∆ui(x, t)

− 1
ε2W

′(ui(x, t)) + µi(t)
1
ε

√
2W (ui(x, t)) + ui(x, t)λ(x, t),

(42)

N∑
i=1

ui(x, t) = 1 ∀x ∈ Ω, (43)

∂

∂t

∫
Ω
ui(x, t) dx = 0 ∀i = 1, . . . , N. (44)

Unlike the previous Lagrange multiplier formulation, we will not be able to
obtain a direct solution. Injecting the non-overlapping condition into the Allen-
Cahn equation, we get:

λ(x, t) = 1∑N
j=1 uj(x, t)

 N∑
j=1

W
′ (uj(x, t))−

N∑
j=1

µj
√

2W (uj(x, t))
 . (45)

The volume conservation constraint gives us:∫
Ω
W
′ (ui(x, t)) dx− µi

∫
Ω

√
2W (ui(x, t)) dx−

∫
Ω
λ(x, t)ui(x, t) dx ∀i = 1, . . . , N

(46)
and thus

µi

∫
Ω

√
2W (ui(x, t)) dx−

N∑
j=1

µj

∫
Ω

ui(x, t)∑N
k=1 uk(x, t)

√
2W (uj(x, t)) dx

=
∫

Ω
W
′ (ui(x, t)) dx−

∫
Ω

ui(x, t)∑N
k=1 uk(x, t)

N∑
k=1

W
′ (uk(x, t)) dx ∀i = 1, . . . , N. (47)

Solving this linear system gives us an expression for µi, and thus for λ.

4.4.2 Second formulation with given volume

Another formulation is possible in the case where we need to enforce that each
phase-field has a given volume Vi. However, with this method, the Lagrange
multipliers are applied in an ad-hoc step after having integrated the Allen-Cahn
over one time step, more precisely, the method can be described as follows:

13

1. define ũin+1 as the result of the integration of

∂ui
∂t

(x, t) = ∆ui(x, t)−
1
ε2W

′(ui(x, t)) (48)

over one time-step δt with initial condition uni .

2. find λ(x) and µi=1,...,N so that

un+1
i (x) := ũi

n+1(x) + µi
√

2W (ũin+1(x)) + λ(x)ũin+1(x) (49)

verifies the following constraints:∫
Ω
un+1
i (x) dx = Vi ∀i = 1, . . . , N, (50)
N∑
i=1

un+1
i (x) ≡ 1. (51)

As previously, the second constraint implies that

λ(x) = −

N∑
k=1

ũk
n+1 − 1 +

N∑
k=1

µk
√

2W (ũin+1(x))

N∑
k=1

ũi
n+1(x)

(52)

and, together with the first constraint, we obtain the following linear system:

µi

∫
Ω

√
2W (ũin+1(x)) dx−

N∑
j=1

µj

∫
Ω

ũi
n+1(x)∑N

k=1 ũk
n+1(x)

√
2W (ũjn+1(x)) dx

= Vi −
∫

Ω
ũi
n+1(x) dx+

∫
Ω

ũi
n+1(x)∑N

k=1 ũk
n+1(x)

(
N∑
k=1

ũk
n+1 − 1

)
. (53)

4.4.3 Results

Let us take a look at the behavior of the first formulation on the same problem
as in the previous section. The figure 3 shows the result without applying zero-
approximation. All the phase-field ui have values in the interval [0, 1], and the
non-overlapping constraint and volume conservation are respected with relative
error of the working precision order.

The significant values are also located around the grain zone, and that leads
to an average of ≈ 2.6 significant values per space point (for τ = 10−4) with

14

(a) Each phase-field
with different color.

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b) Positive part
of one phase-
field with cutoff,
min(max(ui, 0), 0.05).

(c) Non null values ui
with zero approxima-
tion at τ = 10−4.

Figure 3: Kelvin’s problem in two-dimension (see 6.1, page 27) with
the first modified Lagrange multipliers formulation (42).

a standard deviation of ≈ 0.79, i.e. those values are more evenly spread on the
domain.

When applying the algorithm 2 that applied zero-approximation during the
simulation, with tolerance τ = 10−4, the constraints are fulfilled only to a relative
order of 10−1. With τ = 10−8, the maximum relative error is greatly reduced to
10−5 but at the price of memory usage. However, there is no visible difference, as
illustrated by the figure 4.

This mitigated results can be explained by the fact that these Lagrange mul-
tipliers aim to maintain a zero variation of ∑N

i=1 ui(x) and
∫

Ω ui(x) dx but doesn’t
take into account that the zero-approximation modified those values.

Conversely, the second formulation 4.4.2 guarantees, by construction, an exact
fulfillment of the constraints even while applying the zero-approximation.

15

(a) Each phase-field
with different color.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b) Positive part
of one phase-
field with cutoff,
min(max(ui, 0), 0.05).

(c) Non null values ui
with zero approxima-
tion at τ = 10−4.

Figure 4: Kelvin’s problem in two-dimension (see 6.1, page 27) with
the first modified Lagrange multipliers formulation (42) and using zero-
approximation algorithm 2 with τ = 10−4.

4.5 Efficient storage
Now that we have reduced the amount of significant values, we must use an adapted
storage. We have chosen to use a specific storage for each space point, that is
basically a list of (index,value) couples.

4.5.1 Basic storage operations

A value storage for one space point, that takes into account the zero-approximation
ξτ , would have basic read and write operations described in algorithms 3 and 4.

16

Algorithm 3: Read operation in a zero-approximated storage
Data: The storage for a point x ∈ Ω.
Input: The grain index i.
Output: The phase-field value ui(x).

1 if ui(x) is already stored then
2 return the stored value ui(x) ;
3 else
4 return the default value 0 ;
5 end

Algorithm 4: Write operation in a zero-approximated storage
Data: The storage for a point x ∈ Ω and the zero-approximation tolerance τ .
Input: The grain index i and the new value ui(x).

1 if ui(x) is already stored then
2 if the new value is significant, i.e. ξτ (ui(x)) > 0 then
3 Update the stored value with the given ui(x) ;
4 else
5 Remove the associated value from the storage ;
6 end
7 else
8 if the new value is significant, i.e. ξτ (ui(x)) > 0 then
9 Add the given ui(x) to the storage ;

10 else
11 Do nothing ;
12 end
13 end

4.5.2 LabelledMap class

Using a simple list coupling the grain index and the associated value would lead
to a heavy use of dynamically allocated memory, thus implying a performance
penalty due to the non-alignment of the data.

Therefore, we propose to use a structure of a fixed size that can be extended
dynamically if needed. Such a structure already exists in DGtal and is named
LabelledMap2.

It depends on three main parameters, fixed at compile time:

• L is maximum number of data that can be stored (e.g. the number of grains
in the domain),

• N is the number of data that the structure can store without needing to
allocate extra-space,

• M is the number of data stored in each allocated extra-space.
2see http://www.dgtal.org/doc/nightly/classDGtal_1_1LabelledMap.html.

17

http://www.dgtal.org/doc/nightly/classDGtal_1_1LabelledMap.html

As described on figure 5, the structure is composed of:

• a bit field of size greater than L bits (named labels in the schematic),

• an array of N values,

• a pointer that is either used for an extra value or, if more than N + 1 values
need to be stored, as a pointer to the allocated extra-space.

Each allocated extra-space is composed of:

• an array of M values,

• a pointer that can point to an another allocated extra-space.

labels V[0] V[1] ... 0x00

(a) When there is less than 4 data.

labels V[0] V[1] V[2] V[3]

(b) When there is exactly 4 data.

labels V[0] V[1] V[2] pointer

V[3] V[4] V[5] V[6] pointer

(c) When there is more than 4 data.

Figure 5: Schematic of the structure of the LabelledMap class with
parameters N = 3 and M = 4.

18

For example, on a 64 bits architecture, storing double precision values in a
LabelledMap with parameters L = 64, N = 3 and M = 3 will use 40 bytes for the
fixed size structure with extra-storage of size 32 bytes.

The bit field has the i-th bit set if the i-th grain has a stored value in the
LabelledMap. The values are thus sorted by grain index. Therefore, the complexity
of common operations are:

• constant for checking if the i-th grain has a stored value;

• linear with the number of stored values with index lower than i, when reading
or updating the i-th value;

• linear with the total number of stored values when adding a new value.

In the case of storing values for each point of a discretized space, the fixed size
of this structure allows us to allocate it by array and thus having a performance
bonus due to memory alignment. However, the parameter N needs to be chosen
accordingly to balance memory usage and heavy use of dynamic allocation. In
addition, as this parameter is fixed at compile-time, it isn’t easy to adapt it in
real-time depending on the data properties.

4.6 Bounding boxes
In addition to this structure, we propose to use an axis aligned bounding box for
each grain, that is based on the significant values (i.e. not approximated to zero)
of the grain. All of the following features are not already implemented but those
bounding box could be used:

1. to localize the Fast-Fourier Transformation on the bounding box, with an
additional buffer zone around the bounding box in order to take into account
the diffusion;

2. to localize the computation of finite-difference operators, taking into account
the scheme stencil;

3. to accelerate reading of one specific phase-field, e.g. when integrating it.

This bounding box is composed, for each dimension of the space, of a list of
values containing the number of stored values in each orthogonal hyper-plan along
the corresponding axis. Thus, the bounding box is updated when one of these
counters reaches zero or when it becomes not null.

The memory usage is of the order of the number of discretization points along
each axis, and the computational penalty is also low (see the performance analysis
below).

19

4.7 Other optimizations
The main focus when optimizing the code was about memory usage. For example,
in the algorithms 1 and 2, caching the values ofW ′

(
u
n+1/2
i (x)

)
and

√
2W

(
u
n+1/2
i (x)

)
would use too much memory and it is not obvious that reading from the memory
would take less time than recalculating those values.

5 Performance analysis
In order to illustrate the benefits of those strategies, we compare the performances
of common operations with a reference implementation, that is using a vector of
images. An image is a mapping between the discretization points and the values
of a corresponding phase-field. All phase-field values are stored in double precision
format.

The compared storage structures are:

• the reference structure, a STL vector that associates each grain to an instance
of ImageContainerBySTLVector3 (a common image model in DGtal library),
denoted as a horizontal red line in the following figures;

• an image of LabelledMap with parameters M = 5 and N = 1, . . . , 4, with no
bounding boxes and no zero-approximation, denoted as “∅” in the following
figures;

• an image of LabelledMap with parametersM = 5 and N = 1, . . . , 4, without
bounding boxes and with zero-approximation at tolerance τ = 10−10, denoted
as “τ = 10−10” in the following figures;

• an image of LabelledMap with parametersM = 5 and N = 1, . . . , 4, without
bounding boxes and with zero-approximation at tolerance τ = 10−4, denoted
as “τ = 10−4” in the following figures;

• an image of LabelledMap with parameters M = 5 and N = 1, . . . , 4, with
bounding boxes but with no zero-approximation, denoted as “BB” in the
following figures;

• an image of LabelledMap with parameters M = 5 and N = 1, . . . , 4, with
bounding boxes and zero-approximation at tolerance τ = 10−10, denoted as
“BB & τ = 10−10” in the following figures;

3see http://dgtal.org/doc/nightly/classDGtal_1_1ImageContainerBySTLVector.html

20

http://dgtal.org/doc/nightly/classDGtal_1_1ImageContainerBySTLVector.html

• an image of LabelledMap with parameters M = 5 and N = 1, . . . , 4, with
bounding boxes and zero-approximation at tolerance τ = 10−4, denoted as
“BB & τ = 10−4” in the following figures.

The benchmark is made on a two-dimensional periodic space [0, 1]2, discretized
with 10242 points and is composed of the following steps:

1. initialization with 64 phase-fields corresponding to 64 circular grains of radius√
2

16 , evenly spaced on a 8 × 8 grid, and with interface sharpness parameter
ε = 2

1024 (see first graph in figure 6). It tests write performance of the
structures.

2. summing all phase-field values, firstly by summing the values at each space
point and then summing the result over the discretized space (see second
graph in figure 6). It tests read performance for point-wise operations.

3. summing all phase-field values, firstly by summing the values of each image
separately (each one corresponding to a phase-field) and then summing the
resulting values (see third graph in figure 6). It tests read performance when
an operation needs to be done on each image separately.

4. summing the sinus of all phase-field values, firstly for each space point and
then summing the result over the discretized space (see first graph in figure
7). It tests the performance when using a more complex operation, taking
advantage of the fact sin(0) = 0;

5. summing the sinus of all phase-field values, firstly for each image separately
and then summing the resulting values (see second graph in figure 7).

6. summing the shifted sinus (i.e. sin(x + π)) of all phase-field values, firstly
for each space point and then summing the result over the discretized space
(see first graph in figure 8). It tests the performance when using an even
more complex operation (the implementation of sin function is commonly
optimized for near-zero values), taking advantage of the fact that sin(π) = 0;

7. summing the shifted sinus (i.e. sin(x + π)) of all phase-field values, firstly
for each image separately and then summing the resulting values (see second
graph in figure 8).

The additional graphs in figure 9 show the total computational time for all of these
benchmarks and the memory usage of each structure.

Using a zero-approximation with tolerance τ = 10−10 leads to an average of
≈ 3.20 non-approximated values per space point, and ≈ 2.11 for τ = 10−4.

21

As expected, the reference structure has the best performance when writing all
values since it depends only on memory bandwidth. His read performance is better
when summing by images because of the cache-friendly memory alignment in that
case. However, this benefit over the point-wise summing becomes insignificant
when the applied operation is more complex.

The LabbeledMap based structures have poor write performance but the speed
increases when storing less values due to zero-approximation. Using bounding-box
implies a slight performance penalty in that case.

For reading operations, summing firstly by points, the use of zero-approximation
implies better performance that the reference structure, up to a factor 190 when
computing the shifted sinus. However, without bounding boxes, the performances
are worst than the reference structure for image-wise operations.

The localization of the computation allowed by the use of bounding boxes and
zero-approximation allows to partially compensate this performance penalty. In
fact, this strategy offers the best overall performances, except for writing opera-
tions.

In this benchmark, the choice of N slightly impacts the computational time but
infers more significantly the memory usage, depending of the zero-approximation
tolerance.

22

∅ τ = 10−10 τ = 10−4 BB BB & τ = 10−10 BB & τ = 10−4
0

2 000

4 000

vector of images: 1 095.7 ms

3
78

5.
35

2
90

5.
02

2
72

0.
79

4
01

3.
99

2
90

3.
63

2
73

1.
093

46
9.

1

2
84

9.
09

2
67

9.
3

3
96

4.
55

2
86

4.
54

2
68

9.
91

3
74

5.
58

2
82

7.
11

2
68

7.
89

3
83

9.
25

2
83

4.
77

2
69

5.
233

41
5.

1

2
81

2.
09

2
68

2.
88

3
90

5.
53

2
85

4.
73

2
68

7.
71

C
P
U

T
im

e
(m

s)

1. Initializing images with 64 circular grains.

N = 1 N = 2 N = 3 N = 4

∅ τ = 10−10 τ = 10−4 BB BB & τ = 10−10 BB & τ = 10−4
0

100

200

300

400

vector of images: 191.773 ms

31
7.

07

35
.6

2

32
.2

4

31
6.

01

35
.9

5

32
.2

31
9.

1

35
.9

4

32
.4

8

31
8.

82

35
.3

2

31
.7

3

32
0.

11

36
.0

4

32
.0

9

32
1.

65

34
.9

9

32
.0

7

31
2.

53

35
.1

3

32
.2

5

31
2.

7

34
.9

5

31
.4

9C
P
U

T
im

e
(m

s)

2. Summing all values, firstly by point.

N = 1 N = 2 N = 3 N = 4

∅
Time > 5 s

τ = 10−10 τ = 10−4 BB
Time > 5 s

BB & τ = 10−10 BB & τ = 10−4
0

100

200

300

400

vector of images: 70.133 ms

25
4.

97

24
4.

64

41
.3

7

27
.3

4

26
8.

08

25
7.

96

38
.7

23
.6

8

29
2.

75

28
5.

01

37
.2

4

23
.9

32
6.

2

31
6.

77

35
.4

7

22
.9

9

C
P
U

T
im

e
(m

s)

3. Summing all values, firstly by image.

N = 1 N = 2 N = 3 N = 4

Figure 6: Performance comparison between using a list of images
and an array of LabelledMap with different N values, different zero-
approximation tolerances and with or without bounding box.

23

∅ τ = 10−10 τ = 10−4 BB BB & τ = 10−10 BB & τ = 10−4
0

200

400

600

vector of images: 308.726 ms

66
2.

45 87
.9

2

72
.9

66
4.

9 87
.9

1

73
.8

3

66
4.

5 87
.4

7

72
.9

7

66
3.

74 88
.4

3

72
.0

7

65
9.

73 87
.6

76
.8

6

65
8.

47 87
.5

6

72
.3

65
1.

05 86
.7

8

71
.7

7

66
0.

71 87
.5

3

72
.3

6C
P
U

T
im

e
(m

s)

4. Summing all sinus of the values, firstly by point.

N = 1 N = 2 N = 3 N = 4

∅
Time > 5 s

τ = 10−10 τ = 10−4 BB
Time > 5 s

BB & τ = 10−10 BB & τ = 10−4
0

200

400

600

vector of images: 304.735 ms

49
1.

78

47
4.

41

87
.0

8

62
.5

4

49
6.

88

48
7.

32

87
.3

1

61
.1

3

50
6.

44

51
0.

67

84
.2

60
.4

3

53
0.

78

51
3.

14

83
.5

3

60
.3

6C
P
U

T
im

e
(m

s)

5. Summing all sinus of the values, firstly by image.

N = 1 N = 2 N = 3 N = 4

Figure 7: Performance comparison between using a list of images
and an array of LabelledMap with different N values, different zero-
approximation tolerances and with or without bounding box.

24

∅
Time > 20 s

τ = 10−10 τ = 10−4 BB
Time > 20 s

BB & τ = 10−10 BB & τ = 10−4
0

100

200

300

400
vector of images: 20 270.3 ms

14
2.

13

10
5.

86 14
2.

37

10
5.

8514
4.

06

10
6.

8

14
3.

42

10
6.

9714
2.

89

10
5.

38 14
1.

81

10
5.

3514
2.

19

10
5.

19 14
1.

86

10
5.

37

C
P
U

T
im

e
(m

s)

6. Summing all sinus of the values shifted by pi, firstly by point.

N = 1 N = 2 N = 3 N = 4

∅
Time > 26 s

τ = 10−10

Time > 20 s
τ = 10−4

Time > 21 s
BB

Time > 25 s
BB & τ = 10−10 BB & τ = 10−4

0

200

400

600
vector of images: 20 259.6 ms

40
4.

85

26
0.

67

40
4.

06

26
0.

05

40
3.

08

25
9.

54

39
7.

76

25
7.

19

C
P
U

T
im

e
(m

s)

7. Summing all sinus of the values shifted by pi, firstly by image.

N = 1 N = 2 N = 3 N = 4

Figure 8: Performance comparison between using a list of images
and an array of LabelledMap with different N values, different zero-
approximation tolerances and with or without bounding box.

25

∅ τ = 10−10 τ = 10−4 BB BB & τ = 10−10 BB & τ = 10−4
0

2

4

6

·104

vector of images: 42 702.4 ms

66
45

4.
7

24
60

9.
4

24
67

5.
5

66
60

6.
5

3
80

2.
26

3
29

6.
73

63
82

4.
9

24
65

2

24
73

7.
7

64
62

5.
4

3
67

4.
79

3
24

9.
81

64
69

1.
2

24
62

2.
4

24
73

9.
6

63
98

3.
7

3
64

2.
56

3
26

4.
81

63
18

1.
1

24
72

4.
3

24
84

5.
9

62
45

2.
3

3
65

4.
84

3
25

5.
66C
P
U

T
im

e
(m

s)

8. Total CPU time, including allocation.

N = 1 N = 2 N = 3 N = 4

∅ τ = 10−10 τ = 10−4 BB BB & τ = 10−10 BB & τ = 10−4
0

200

400

600

vector of images: 512.007 MiB

64
9.

01 61
.8

9

35
.7

2

64
9.

01 61
.9

35
.7

2

65
7.

01 54
.2

35
.8

9

65
7.

01 54
.2

35
.8

9

66
5.

01

41
.4

8

41

66
5.

01

41
.4

8

41
.0

1

62
5.

01

49 49

62
5.

01

49
.0

1

49
.0

1M
em

or
y
us
ag

e
(M

iB
)

9. Memory used to store the phase-fields.

N = 1 N = 2 N = 3 N = 4

Figure 9: Performance comparison between using a list of images
and an array of LabelledMap with different N values, different zero-
approximation tolerances and with or without bounding box.

26

6 Some applications
We now illustrate some current applications of the implemented C++ code.

6.1 The Kelvin’s problem
The Kelvin’s problem is about filling the space with cells of equal volume such
that the total surface area is minimal.

6.1.1 The 2D case: the honeycomb

In the two-dimensional case, this problem has already been solved in 1999 by
Thomas C. Hales (see [6]) and the honeycomb is proved to be the optimal filling.
The surface minimization problem behind this can be formulated in a volumetric
manner using the Allen-Cahn equation (17) with non-overlapping condition and
volume conservation. An another volumetric reformulation using phase-fields is
described in [7].

To illustrate this, we use a random initial density of 128 phases on a periodic
domain [0, 1]2 (see figure 10), discretized with 5122 points and we applied our
framework, with the volume conservation formulation given in 4.4.2 (adapted to
fix an equal volume for each phase), until an equilibrium is reached. We use an
interface sharpness order of ε = 3

512 .
As this domain is square, we do not expect to obtain the honeycomb struc-

ture but it is a good example to analyze the performance evolution during the
simulation.

The figures 10, 11 and 12 show the result at different steps. Each color is
associated to the phase-field with the maximum value at the given point.

As we can see, the evolution is quite fast at the beginning and goes very slowly
at the end. The equilibrium is still not reached at the 1000th step.

The figures 13 show how the computational time of each step and the memory
usage, evolve during the simulation. At the beginning, as the phase-fields have
significant values everywhere, the memory consumption is high and thus, the com-
putational time too. In addition, updating values in the LabelledMap take more
time due to the linear complexity.

During the simulation, as the cells become bigger, the mean number of sig-
nificant values per point decreases, so as the memory usage and computational
time.

This means that an adapted strategy must be used in order to avoid high initial
memory consumption while keeping fast evolution of the simulation.

27

Figure 10: Surface minimization problem from a random initial density
of 128 phases in 2D, at initial step.

28

(a) Step #1 (b) Step #2 (c) Step #3

(d) Step #10 (e) Step #20 (f) Step #30

(g) Step #100 (h) Step #200 (i) Step #300

Figure 11: Surface minimization problem from a random initial density
of 128 phases in 2D.

29

Figure 12: Surface minimization problem from a random initial density
of 128 phases in 2D, at step #1000.

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

50

100

Iteration

C
PU

tim
e
(s
)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

20

40

60

80

Iteration

Si
gn

ifi
ca
nt

va
lu
es

pe
r
po

in
t

min/max
mean

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 300

50

100

150

200

Iteration

M
em

or
y
us
ag
e
(M

B)

Figure 13: Performance evolution during the surface minimization
problem with 128 phases.

31

6.1.2 The 3D case: the Weaire and Phelan structure

In the three-dimensional case, there is no proven minimal structure but the one
from Weaire and Phelan (see [11]) is currently the best known. It is composed of
eight cells that compose a filling of the periodic space [0, 1]3.

As in [7], we try to find this structure using our volumetric formulation. To
overcome the convergence issues that arise from previous case, we start for a ran-
dom initial density on a low-resolution grid (of 643 points) to avoid an excessive
memory usage and a high interface sharpness ε to have a fast convergence rate.
When the system seems to be at equilibrium, we alternate decrease of ε and in-
crease of the resolution up to 5123.

The figures 14 show the result at different steps, with a volumetric rendering
(some cells are partially transparent). The surface of some cells is visible in the
figure 15a, and a slice of the data in 15b. In this last figure, we can clearly see the
expected curvature of some faces of the cells.

32

Figure 14: Surface minimization problem from an random initial den-
sity of 8 phases in 3D.

33

(a) Surface of some cells. (b) Slice of the data.

Figure 15: Result of the surface minimization problem with 8 phases
in 3D.

34

6.2 Estimation of the condensation coefficient
Another current application is about estimating the condensation coefficient α.
Even though it has a direct influence on the interface speed (see equation (1)),
this coefficient is know with a very poor precision, usually as 10−3 ≤ α ≤ 10−1.

We propose here to compare simulated and physically observed results in order
to estimate α. The reference observations come from an isothermal metamorphism
experience applied on a snow sample at −7 ◦C and from which the ice domain has
been extracted by X-ray microtomography (see [3]) at the initial time and after
28 hours (see figure 16).

The comparison with multiple α values is easy because of the fact that our
simplified isothermal evolution equation (15) (with C defined in (3)) is equivalent
to the Allen-Cahn equation (16) up to a time-scale factor that is linearly dependent
to the condensation coefficient α.

Thus, simulating the Allen-Cahn equation and taking snapshots at specific
times is equivalent to use different α values for a simulation of 28 hours of isother-
mal metamorphism.

From that, we propose to find α that minimize the symmetric difference be-
tween the observed ice domain and the simulated one. The figure 17 shows the
result when the ice domain is simulated as one phase.

On the other side, the figure 18 comes from a simulation where a curvature-
based segmentation algorithm (see [4]) has been applied to the initial data to split
the ice domain into separate grains. The metamorphism is then simulated using
our multi-phase framework and the symmetric difference is taken from the full ice
domain.

The initial segmented observation is illustrated in figure 16a and the final ob-
servation in figure 16b. They are composed of 1313 sampling points and the sym-
metric difference, after simulation at full resolution, is taken on a central domain
of 1003 points in order to offset the fact that the snow sample is not periodic.

Without segmentation, the condensation coefficient that minimize the sym-
metric difference is approximately α ≈ 0.026, and α ≈ 0.034 when the grains
are initially segmented. The difference in those estimations and the fact that
the segmented-based simulation has a higher symmetric difference volume may be
explained by an over-segmentation of the curve-based algorithm.

All these values are likely but the use of a more complete model is necessary
to have a better confidence is those results.

35

(a) Initial observation with
curvature-based segmentation
(61 ice grains) using [4].

(b) Observation after 28 hours,
without grain segmentation.

Figure 16: Initial and final observation of a snow sample during an
isothermal metamorphism experiment at −7 ◦C, by X-ray microtomog-
raphy (see [3]).

36

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
3

4

5

6

·10−2

α ≈ 0.026

α

|Ω
ic
e,
α

∆
Ω
ic
e,
re
f|

Figure 17: Volume of the symmetric difference between the ice phase
of the observed state after 28 hours of isothermal metamorphism, and
the simulated result from the non-segmented initial observation and for
different condensation’s coefficient values.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

3.8

4

4.2

4.4

4.6

4.8
·10−2

α ≈ 0.034

α

|Ω
ic
e,
α

∆
Ω
ic
e,
re
f|

Figure 18: Volume of the symmetric difference between the ice phase
of the observed state after 28 hours of isothermal metamorphism, and
the simulated result from the curvature-based grain segmentation of the
initial observation and for different condensation’s coefficient values.

37

7 Conclusion
In this report, we have proposed a new reformulation of the Allen-Cahn equation
in the multiphasic case, with non-overlapping and volume conservation properties,
adapted to the use of an efficient computer memory structure based on the sig-
nificant values of the phase-fields. This combination allows us to run multi-grain
snow metamorphism simulations with a low memory usage and an optimized com-
putational time.

We will now focus on adding more complex terms to the model, like anisotropy,
variable surface tensions, vapor diffusion in the gas domain and temperature dif-
fusion in the whole domain.

References
[1] E. Bretin. Mouvements par courbure moyenne et méthode de champs de phase.

PhD thesis, Institut National Polytechnique de Grenoble-INPG, 2009.

[2] N. Calonne. Physique des métamorphoses de la neige sèche : de la microstruc-
ture aux propriétés macroscopiques. PhD thesis, Université de Grenoble, 2014.

[3] N. Calonne, F. Flin, B. Lesaffre, A. Dufour, J. Roulle, P. Puglièse, A. Philip,
F. Lahoucine, C. Geindreau, J.-M. Panel, et al. Celldym: A room temperature
operating cryogenic cell for the dynamic monitoring of snow metamorphism
by time-lapse x-ray microtomography. Geophysical Research Letters, 42:3911–
3918, 2015.

[4] F. Flin, B. Lesaffre, A. Dufour, L. Gillibert, A. Hasan, S. Rolland du Roscoat,
S. Cabanes, and P. Pugliese. On the computations of specific surface area and
specific grain contact area from snow 3d images. Physics and Chemistry of
Ice, pages 321–328, 2011.

[5] J. Gruber, N. Ma, Y. Wang, A. D. Rollett, and G. S. Rohrer. Sparse data
structure and algorithm for the phase field method. Modelling and Simulation
in Materials Science and Engineering, 14(7):1189, 2006.

[6] T. C. Hales. The honeycomb conjecture. Discrete & Computational Geometry,
25(1):1–22, 2001.

[7] É. Oudet. Approximation of partitions of least perimeter by γ-convergence:
around kelvin’s conjecture. Experimental Mathematics, 20(3):260–270, 2011.

38

[8] R. I. Saye and J. A. Sethian. The voronoi implicit interface method for com-
puting multiphase physics. Proceedings of the National Academy of Sciences,
108(49):19498–19503, 2011.

[9] L. Vanherpe, N. Moelans, B. Blanpain, and S. Vandewalle. Bounding box al-
gorithm for three-dimensional phase-field simulations of microstructural evo-
lution in polycrystalline materials. Physical Review E, 76(5):056702, 2007.

[10] S. Vedantam and B. S. V. Patnaik. Efficient numerical algorithm for multi-
phase field simulations. Physical Review E, 73(1):016703, 2006.

[11] D. Weaire and R. Phelan. A counter-example to kelvin’s conjecture on mini-
mal surfaces. Philosophical Magazine Letters, 69(2):107–110, 1994.

39

	Contents
	Introduction
	Grain growth velocity
	The phase-field point of view
	Derivation of the model
	Extension to multi-grain case
	Non-overlapping condition
	Volume conservation
	Mixing the two constraints

	Numerical implementation
	Reference scheme
	Remarks on the computational complexity
	Zero approximation
	New non-overlapping Lagrange multiplier
	First formulation
	Second formulation with given volume
	Results

	Efficient storage
	Basic storage operations
	LabelledMap class

	Bounding boxes
	Other optimizations

	Performance analysis
	Some applications
	The Kelvin's problem
	The 2D case: the honeycomb
	The 3D case: the Weaire and Phelan structure

	Estimation of the condensation coefficient

	Conclusion

