3D Growth Rates from Tomographic Images: Local Measurements
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1. Abstract

Once deposited on the ground, snow forms a complex porous material whose microstructure constantly transforms over time. These evolutions, which strongly impact the physical and
mechanical properties of snow (e.g. Srivastava et al, 2010; Lowe et al, 2013; Calonne et al, 2014) need to be considered in details for an accurate snowpack modeling. However, some of the
physical mechanisms involved in metamorphism are still poorly understood.

To address this problem, several investigations combining X-ray tomography and 3D micro-modeling have been carried out (e.g. Flin et al, 2003; Kaempfer and Plapp, 2009; Pinzer et al, 2012)
but precise comparisons between experimentation and modeling remain difficult. One of the difficulties comes from the lack of high resolution time-lapse series for experiments occurring
with very well-defined boundary conditions, and from which precise measurements of the interfacial growth rates can be done.

Using CellDyM, a recently developed cryogenic cell (Calonne et al, 2015), we conducted in situ time-lapse tomographic experiments on several snow and ice samples under various
conditions (isothermal metamorphism at -7°C, temperature gradient metamorphism at -2°C under a TG of 18 K/m, air bubble migration in a single crystal at -4°C under a TG of 45 K/m). The
non-destructive nature of X-ray microtomography yielded series of 8 micron resolution images that were acquired with time steps ranging from 2 to 12 hours. An image analysis method was
then developed to estimate the normal growth rates on each point of the ice-air interface and applied to the series obtained.

The analysis of the results and their comparison to those of existing experiments or models (e.g. Flin et al, 2003; Flin and Brzoska, 2008; Pinzer et al, 2012) give interesting outlooks for the
understanding of the physical mechanisms involved in snow metamorphism.

2. CellDyM: a Cryogenic Cell for Time-lapse Tomography at Room-Temperature

Based on the following principles: Metamorphism under isothermal conditions at -7°C
-thermal regulation using 2 Peltier modules at top and base of the sample

-thermal insulation from room temperature using a vacuum chamber

-an amovible conductive sample holder that protects specimens during . Ilcm
their installation into the cell
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4. Preliminary Resuus Isothermal conditions at -7°C: is sublimation-deposition the dominant mechanism ?
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