

Computation of grain sizes from microtomographic images of snow

frederic.flin@meteo.fr

F. Flin ¹, X. Wang ^{1, 2}, P. Hagenmuller ³, N. Calonne ^{1, 4}, B. Lesaffre ¹, A. Dufour ¹, D. Coeurjolly ², G. Chambon ³, C. Geindreau ⁴, S. Rolland du Roscoat ⁴
¹ CEN, CNRM - GAME URA 3589, Météo-France - CNRS, Grenoble, France ² LIRIS UMR 5205, CNRS, Lyon, France
³ IRSTEA, UR ETGR Erosion torrentielle neige et avalanches
⁴ 3S-R UMR 5521, CNRS - Université Joseph Fourier - Grenoble INP, Grenoble, France

Method : X-ray Microtomography

Grain sizes: 2 distinct definitions

Fierz et al 2009

Optical-equivalent grain size:

Size of the sphere that has the same Surface / Volume ratio

Classical definition: size of disaggregated particles

Mechanically detached

 \rightarrow Tomography: can estimate both of these grain sizes

Part 1: Optical Grain Size and Specific Surface Area (SSA) from 3D images

Some reminders about SSA

⁷ Definition

SSA = S / M

S: surface area (m²) M: mass (kg)

- *[″]* Importance
 - . Related to grain size (spherical approximation) [L⁻¹]
 - Characterize snow metamorphism evolution
 - . Surface available for chemical reactions
- Measurements
 - . CH4 adsorption (Legagneux et al, 2002; Kerbrat et al 2008)
 - Near Infra Red methods (Gallet et al, 2009; Arnaud et al, 2011)
 - . Tomography (Flin et al, 2004; Schneebeli and Sokratov, 2004)

Why studying SSA measurements from 3D images ?

- An important physical parameter that can be measured from field measurements AND from 3D images → link between microscale experiments and snowpack studies
- Increasing number of tomographs and SSA computation methods in the world (SLF, AWI, Dartmouth College & CRREL, UAF, SASEõ)
- Questions:
 - Do all the numerical methods give the same results and is a minimal image resolution necessary to compute accurate SSA ?

SSA numerical measurements

- 4 different approaches for surface computation
 - . Method 1: stereology (Underwood, 1970)
 - . Method 2: triangulation (Lorensen and Cline, 1987)
 - . Method 3: projection methods (Flin et al, 2005)
 - . Method 4: graph-cut approach (Hagenmuller et al, 2013)

Tests on diverse snow types :

Rounded Grains edge: 2.5 mm

Melt Forms edge: 4.5 mm

Fresh Snow edge: 2.5 mm

Decomposing Particles edge: 2.5 mm

Impact of Methods and Resolution

Fresh snow Rounded Grains 65 14 101x —× P10x - X60 101v P10v -1017 P10z 55 101-MC P10-MC 101-VP 50 P10-VP 101-GC F10-GC SSA (m²/kg) 10 SSA (m²/kg) 45 108x H3x 108v H3v 40 108z H3z 8 108-MC H3-MC 35 108-VP H3-VP — 108-GC H3-GC 3 6 25 **Melt Forms** 20 20 60 0 100 20 Decomposing 20 40 60 80 0 100 120 Voxel size (µm) Voxel size (µm) **Particles**

- \rightarrow At high resolution, all methods agree within ± 15%
- \rightarrow Results strongly depend on the snow type
- \rightarrow ST methods give different estimations between z and x-y directions
- → Marching Cubes systematically overestimates SSA
- \rightarrow VP is particularly sensitive to resolution decrease
- → Graph-cut method is close to VP but is less sensitive to resolutions issues

Part 2: Classical Grain Size and Specific Grain Contact Area (SGCA) from 3D images

Idea: estimating the size of the contact area between grains

" Method:

Idea: estimating the size of the contact area between grains

. Estimate the SSA of the snow sample

Idea: estimating the size of the contact area between grains

- . Estimate the SSA of the snow sample
- . Estimate the average SSA for the grains constituting the snow sample (SSA_{tot})

- Idea: estimating the size of the contact area between grains
- *Method*:

- . Estimate the SSA of the snow sample
- . Estimate the average SSA for the grains constituting the snow sample (SSA_{tot})
- . 2*SGCA = SSA_{tot}-SSA is the SSA that would be released by neck breaking

Segmentation Methods

Hagenmuller et al, 2013

- 2 curvature-based algorithms :
 - . CDGS : Wang et al, 2012
 - . Grain segmentation with 2 distinct parameters

(Hagenmuller et al, 2013)

Examples for CDGS algorithm

Decomposing Particles / Rounded Grains Edge size = 2.5 mm - 604 grains

Melt Forms Edge size = 4.5 mm -129 grains

- \rightarrow Consistency of the methods: similar behavior with snow type
- \rightarrow Relationship between SSA (grain size) and SGCA (neck size).
- → Mechanically processing %dd+snow samples could significantly increase SSA
- \rightarrow SGCA seems a potential parameter to help in determining the snow type 17

Conclusions

- The main numerical methods that are commonly used to determine SSA from 3D images give slightly different results
- Each method has its own drawbacks: ST is not adapted to anisotropic media, MC overestimate SSA and VP is particularly sensitive to resolution decrease.
- ^{$"} Depending on the method, SSA estimation of recent snow require high resolution images (voxel size < 5 <math>\mu$ m)</sup>
- Thanks to the combination of SSA and grain segmentation algorithms, SGCA values can be estimated: this opens new outlooks for the study of snow microstructure
- Segmentation methods do not give absolute estimations but give consistent results
- Grain size is closely linked to grain shape and grain connectivity

More information :

Calonne et al, **SSA metamorphism and other properties**, poster P4-21 Hagenmuller et al, **SGCA and Grain segmentation approaches**, poster P4-22 Wang et al, **Grain segmentation**, poster P4-19